THE EXTREMAL POINT PROCESS OF BRANCHING BROWNIAN MOTION IN Rd

被引:1
|
作者
Berestycki, Julien [1 ,2 ]
Kim, Yujin h. [3 ]
Lubetzky, Eyal [3 ]
Mallein, Bastien [4 ]
Zeitouni, Ofer [3 ,5 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Univ Oxford, Magdalen Coll, Oxford, England
[3] NYU, Courant Inst Math Sci, New York, NY USA
[4] Univ Sorbonne Paris Nord, LAGA, UMR 7539, Villetaneuse, France
[5] Weizmann Inst Sci, Dept Math, New York, NY USA
来源
ANNALS OF PROBABILITY | 2024年 / 52卷 / 03期
基金
欧洲研究理事会;
关键词
Branching Brownian motion; cluster process; decorated Poisson point process; extremal point process; extreme value theory; CONVERGENCE; EQUATION; MAXIMUM; LAW;
D O I
10.1214/23-AOP1677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a branching Brownian motion in Rd with d >= 1 in which the position X(u) t is an element of Rd of a particle u at time t can be encoded by its direction theta(u) t is an element of Sd-1 and its distance R(u) t to 0. We prove that the extremal point process Sigma delta(theta(u) t,Rt(u)-m(d) t ) (where the sum is over all particles alive at time t and m(d) t is an explicit centering term) converges in distribution to a randomly shifted, decorated Poisson point process on Sd-1 x R. More precisely, the so-called clan -leaders form a Cox process with intensity proportional to root D infinity(theta)e- 2r dr d theta, where D infinity (theta) is the limit of the derivative martingale in direction theta and the decorations are i.i.d. copies of the decoration process of the standard one-dimensional branching Brownian motion. This proves a conjecture of Stasin<acute accent>ski, Berestycki and Mallein (Ann. Inst. Henri Poincar & eacute; Probab. Stat. 57 (2021) 1786-1810). The proof builds on that paper and on Kim, Lubetzky and Zeitouni (Ann. Appl. Probab. 33 (2023) 1315-1368).
引用
收藏
页码:955 / 982
页数:28
相关论文
共 50 条
  • [1] The extremal process of branching Brownian motion
    Louis-Pierre Arguin
    Anton Bovier
    Nicola Kistler
    [J]. Probability Theory and Related Fields, 2013, 157 : 535 - 574
  • [2] The extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 535 - 574
  • [3] An ergodic theorem for the extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 557 - 569
  • [4] POISSONIAN STATISTICS IN THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    [J]. ANNALS OF APPLIED PROBABILITY, 2012, 22 (04): : 1693 - 1711
  • [5] EXTENDED CONVERGENCE OF THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION
    Bovier, Anton
    Hartung, Lisa
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1756 - 1777
  • [6] The extremal process of two-speed branching Brownian motion
    Bovier, Anton
    Hartung, Lisa
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 28
  • [7] Genealogy of Extremal Particles of Branching Brownian Motion
    Arguin, L. -P.
    Bovier, A.
    Kistler, N.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (12) : 1647 - 1676
  • [8] THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN Rd
    Kim, Yujin H.
    Lubetzky, Eyal
    Zeitouni, Ofer
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (02): : 1315 - 1368
  • [9] Fisher-KPP equation with small data and the extremal process of branching Brownian motion
    Mytnik, Leonid
    Roquejoffre, Jean-Michel
    Ryzhik, Lenya
    [J]. ADVANCES IN MATHEMATICS, 2022, 396
  • [10] The extremal process of super-Brownian motion
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 137 : 1 - 34