Hybrid curved nano-structured micro-optical elements

被引:23
|
作者
Balcytis, A. [1 ,2 ]
Hakobyan, D. [1 ,3 ,4 ]
Gabalis, M. [2 ]
Zukauskas, A. [5 ]
Urbonas, D. [2 ]
Malinauskas, M. [5 ]
Petruskevicius, R. [2 ]
Brasselet, E. [3 ,4 ]
Juodkazis, S. [1 ]
机构
[1] Swinburne Univ Technol, Fac Engn & Ind Sci, Ctr Microphoton, Hawthorn, Vic 3122, Australia
[2] Ctr Phys Sci & Technol, Dept Laser Technol, Savanoriu Ave 231, LT-02300 Vilnius, Lithuania
[3] Univ Bordeaux, LOMA, UMR 5798, F-33400 Talence, France
[4] CNRS, LOMA, UMR 5798, F-33400 Talence, France
[5] Vilnius Univ, Fac Phys, Dept Quantum Elect, Sauletekio Ave 10, LT-10223 Vilnius, Lithuania
来源
OPTICS EXPRESS | 2016年 / 24卷 / 15期
基金
澳大利亚研究理事会;
关键词
ORBITAL ANGULAR-MOMENTUM; SPIRAL ZONE PLATES; METASURFACES; MODE; MICROFABRICATION; MANIPULATION; INTEGRATION; SCATTERING; EFFICIENCY; TWEEZERS;
D O I
10.1364/OE.24.016988
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Tailoring the spatial degree of freedom of light is an essential step towards the realization of advanced optical manipulation tools. A topical challenge consists of device miniaturization for improved performance and enhanced functionality at the micron scale. We demonstrate a novel approach that combines the additive three-dimensional (3D) structuring capability of laser polymerization and the subtractive subwavelength resolution patterning of focused ion beam lithography. As a case in point hybrid (dielectric/metallic) micro-optical elements that deliver a well-defined topological shaping of light are produced. Here we report on hybrid 3D binary spiral zone plates with unit and double topological charge. Their optical performances are compared to corresponding 2D counterparts both numerically and experimentally. Cooperative refractive capabilities without compromising topological beam shaping are shown. Realization of advanced designs where the dielectric architecture itself is endowed with singular properties is also discussed. (C) 2016 Optical Society of America
引用
收藏
页码:16988 / 16998
页数:11
相关论文
共 50 条
  • [21] Study of the optical force on nano-structured surfaces
    Yuan, Yukun
    Gu, Chunyang
    Huang, Siyu
    Chen, Shufan
    Li, Zexiao
    Fang, Fengzhou
    PHYSICA SCRIPTA, 2023, 98 (06)
  • [22] Nanoimprint technology for nano-structured optical devices
    Lee, K. D.
    Ahn, S. W.
    Kim, S. H.
    Lee, S. H.
    Park, J. D.
    Yoon, P. W.
    Kim, D. H.
    Lee, S. S.
    CURRENT APPLIED PHYSICS, 2006, 6 : E149 - E153
  • [23] Simple technique for replication of micro-optical elements
    Nussbaum, P
    Philipoussis, I
    Husser, A
    Herzig, HP
    OPTICAL ENGINEERING, 1998, 37 (06) : 1804 - 1808
  • [24] Flexible automated assembly of micro-optical elements
    Siercks, K
    2003 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2003, : 451 - 452
  • [25] Refractive and diffractive elements for micro-optical systems
    Nussbaum, P
    Herzig, HP
    MICROELECTRONIC STRUCTURES AND MEMS FOR OPTICAL PROCESSING III, 1997, 3226 : 32 - 43
  • [26] Micro- and nano-structured optical fibers -: Artificial media for amplification of light.
    Tünnermann, A
    Röser, F
    Schreiber, T
    Limpert, J
    Liem, A
    Reich, M
    Höfer, S
    Zellmer, H
    Burghoff, J
    Will, M
    Nolte, S
    Ultrafast Lasers for Materials Science, 2005, 850 : 79 - 87
  • [27] Optical fabrication of nano-structured biopolymer surfaces
    Ramanujam, PS
    OPTICAL MATERIALS, 2005, 27 (06) : 1175 - 1177
  • [28] Studies on the micro/nano-structured polyanline and its wettability
    Ding Hangjun
    Zhu Changjin
    Zhou Zhiming
    Wan Meixiang
    ACTA POLYMERICA SINICA, 2007, (03) : 282 - 288
  • [29] MEMS actuators for silicon micro-optical elements
    Tien, NC
    McCormick, DT
    MOEMS AND MINIATURIZED SYSTEMS, 2000, 4178 : 256 - 269
  • [30] Bioinspired micro- and nano-structured neural interfaces
    Mariano, Anna
    Bovio, Claudia Latte
    Criscuolo, Valeria
    Santoro, Francesca
    NANOTECHNOLOGY, 2022, 33 (49)