Bayesian Estimation for Poisson-exponential Model under Progressive Type-II Censoring Data with Binomial Removal and Its Application to Ovarian Cancer Data

被引:20
|
作者
Singh, Sanjay Kumar
Singh, Umesh
Kumar, Manoj
机构
[1] Banaras Hindu Univ, Dept Stat, Ctr Interdisciplinary Math Sci, Varanasi, Uttar Pradesh, India
[2] Banaras Hindu Univ, Dept Sci & Technol, Ctr Interdisciplinary Math Sci, Varanasi, Uttar Pradesh, India
关键词
General entropy loss function; Poisson-exponential distribution; Progressive type-II censored data with Binomial removals; Squared error loss function; 62F10; 62F15; INFERENCE; SAMPLES;
D O I
10.1080/03610918.2014.948189
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we propose Maximum likelihood estimators (MLEs) and Bayes estimators of parameters of Poisson-exponential distribution (PED) under General entropy loss function (GELF) and Squared error loss function (SELF) for Progressive type-II censored data with binomial removals (PT-II CBRs). The MLEs and corresponding Bayes estimators are compared in terms of their risks based on simulated samples from PED. The proposed methodology is illustrated on a real dataset of ovarian cancer.
引用
收藏
页码:3457 / 3475
页数:19
相关论文
共 50 条