BAYESIAN ESTIMATION FOR THE LINDLEY DISTRIBUTION UNDER PROGRESSIVE TYPE-II CENSORING WITH BINOMIAL REMOVALS

被引:0
|
作者
Kishan, Ram [1 ]
Kumar, Jitendra [2 ]
机构
[1] Dept Stat DAV PG Coll, Muzaffarnagar 251001, India
[2] Planning Dept, Directorate Econ & Stat, Delhi 110054, India
关键词
Progressive Type-II censoring scheme; Maximum Likelihood Estimator; Bayes Estimate; Squared Error Loss Function; MCMC method;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
In this paper, we consider the estimation procedures of parameters, survival function, probability density function and hazard function of Lindley distribution under progressive Type-II censoring scheme with binomial removals. We obtain maximum likelihood estimates for parametric function and their confidence interval using delta method. The Bayes estimates of the same parametric functions are also evaluated using MCMC method under squared error loss function. Finally, some numerical illustrations are given using simulated and real data with given different binomial probability.
引用
收藏
页码:361 / 369
页数:9
相关论文
共 50 条
  • [1] ESTIMATION IN EXPONENTIAL POWER DISTRIBUTION UNDER PROGRESSIVE TYPE-II CENSORING WITH BINOMIAL REMOVALS
    Kishan, Ram
    Sangal, Prabhat Kumar
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2019, 15 (02): : 713 - 726
  • [2] MAXIMUM PRODUCT SPACING ESTIMATION FOR ODD LINDLEY HALF LOGISTIC DISTRIBUTION UNDER PROGRESSIVE TYPE-II CENSORING WITH BINOMIAL REMOVALS
    Ozkan, Egemen
    Simsek, Gulhayat Golbasi
    Tanış, Caner
    International Journal of Industrial Engineering : Theory Applications and Practice, 2024, 31 (06): : 1382 - 1391
  • [3] Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals
    Nie, Jiaxin
    Gui, Wenhao
    MATHEMATICS, 2019, 7 (07)
  • [4] E-Bayesian inference for xgamma distribution under progressive type II censoring with binomial removals and their applications
    Pathak, Anurag
    Kumar, Manoj
    Singh, Sanjay Kumar
    Singh, Umesh
    Tiwari, Manoj Kumar
    Kumar, Sandeep
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2024, 44 (03): : 136 - 155
  • [5] Bayesian Estimation for Inverse Weibull Distribution under Progressive Type-II Censored Data with Beta-Binomial Removals
    Vishwakarma, Pradeep K.
    Kaushik, Arun
    Pandey, Aakriti
    Singh, Umesh
    Singh, Sanjay K.
    AUSTRIAN JOURNAL OF STATISTICS, 2018, 47 (01) : 77 - 94
  • [6] Classical and Bayesian Estimation in Exponential Power Distribution under Type-I Progressive Hybrid Censoring with Binomial Removals
    Kishan, R.
    Sangal, P. K.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (03): : 537 - 558
  • [7] A statistical inference for generalized Rayleigh model under Type-II progressive censoring with binomial removals
    Ren Junru
    Gui Wenhao
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2020, 31 (01) : 206 - 223
  • [8] Bayesian estimation of the survival characteristics for Hjorth distribution under progressive type-II censoring
    Yadav, Abhimanyu Singh
    Bakouch, Hassan S.
    Chesneau, Christophe
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (03) : 882 - 900
  • [9] CLASSICAL ESTIMATION OF RELIABILITY CHARACTERISTICS IN LINDLEY DISTRIBUTION USING PROGRESSIVE TYPE-II CENSORED DATA WITH BETA-BINOMIAL REMOVALS
    Sangal, Prabhat Kumar
    Rajesh
    Dutta, Somnath
    Garg, Neha
    Pachori, Menakshi
    Singh, Lakhan
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2022, 18 : 2227 - 2238
  • [10] Reliability sampling plans for the Weibull distribution under Type II progressive censoring with binomial removals
    Tse, SK
    Yang, CY
    JOURNAL OF APPLIED STATISTICS, 2003, 30 (06) : 709 - 718