Channel Metamodeling for Explainable Data-Driven Channel Model

被引:4
|
作者
Lee, Hyun-Suk [1 ]
机构
[1] Sejong Univ, Sch Intelligent Mechatron Engn, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
Channel models; Metamodeling; Deep learning; Mathematical model; Data processing; Wireless communication; Learning systems; Channel model; data-driven; deep learning; explainable AI; symbolic metamodeling; PREDICTION;
D O I
10.1109/LWC.2021.3111874
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning can produce accurate data-driven channel models, but their black-box nature makes it harder to explain the models and to understand underlying channel characteristics. In this letter, we propose a channel metamodeling approach for such a black-box data-driven channel model. Our approach enables us to express the data-driven channel model in terms of transparent mathematical expressions based on symbolic function approximation methods. Through experiments with synthetic and real datasets, we demonstrate that our approach produces a channel metamodel of the data-driven channel model for each dataset that is highly accurate and allows us to easily explain the data-driven channel model and to understand the underlying channel characteristics.
引用
收藏
页码:2678 / 2682
页数:5
相关论文
共 50 条
  • [41] Data-Driven Method for Nonlinear Optical Fiber Channel Modeling Based on Deep Neural Network
    Jiang, Rui
    Fu, Ziling
    Bao, Yansheng
    Wang, Huiying
    Ding, Xin
    Wang, Zhi
    [J]. IEEE PHOTONICS JOURNAL, 2022, 14 (04):
  • [42] Data-driven attack policy design for cyber-physical systems under channel constraints
    Liu, He
    Li, Xiao-Jian
    [J]. INFORMATION SCIENCES, 2024, 677
  • [43] EXPLOITING TEMPORAL STRUCTURES OF CYCLOSTATIONARY SIGNALS FOR DATA-DRIVEN SINGLE-CHANNEL SOURCE SEPARATION
    Lee, Gary C. F.
    Weiss, Amir
    Lancho, Alejandro
    Tang, Jennifer
    Bu, Yuheng
    Polyanskiy, Yury
    Wornell, Gregory W.
    [J]. 2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [44] Sedimentological data-driven bottom friction parameter estimation in modelling Bristol Channel tidal dynamics
    Simon C. Warder
    Athanasios Angeloudis
    Matthew D. Piggott
    [J]. Ocean Dynamics, 2022, 72 : 361 - 382
  • [45] Co-Channel Multiuser Modulation Classification Using Data-Driven Blind Signal Separation
    Deng, Wen
    Wang, Xiang
    Huang, Zhitao
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14829 - 14843
  • [46] Sedimentological data-driven bottom friction parameter estimation in modelling Bristol Channel tidal dynamics
    Warder, Simon C.
    Angeloudis, Athanasios
    Piggott, Matthew D.
    [J]. OCEAN DYNAMICS, 2022, 72 (06) : 361 - 382
  • [47] Data-driven inverse modeling with a pre-trained neural network at heterogeneous channel reservoirs
    Ahn, Seongin
    Park, Changhyup
    Kim, Jaejun
    Kang, Joe M.
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 170 : 785 - 796
  • [48] A model of fake data in data-driven analysis
    Li, Xiaofan
    Whinston, Andrew B.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [49] Interpretable and explainable predictive machine learning models for data-driven protein engineering
    Medina-Ortiz, David
    Khalifeh, Ashkan
    Anvari-Kazemabad, Hoda
    Davari, Mehdi D.
    [J]. Biotechnology Advances, 2025, 79
  • [50] Data-driven explainable machine learning for personalized risk classification of myasthenic crisis
    Bershan, Sivan
    Meisel, Andreas
    Mergenthaler, Philipp
    [J]. International Journal of Medical Informatics, 2025, 194