Channel Metamodeling for Explainable Data-Driven Channel Model

被引:4
|
作者
Lee, Hyun-Suk [1 ]
机构
[1] Sejong Univ, Sch Intelligent Mechatron Engn, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
Channel models; Metamodeling; Deep learning; Mathematical model; Data processing; Wireless communication; Learning systems; Channel model; data-driven; deep learning; explainable AI; symbolic metamodeling; PREDICTION;
D O I
10.1109/LWC.2021.3111874
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning can produce accurate data-driven channel models, but their black-box nature makes it harder to explain the models and to understand underlying channel characteristics. In this letter, we propose a channel metamodeling approach for such a black-box data-driven channel model. Our approach enables us to express the data-driven channel model in terms of transparent mathematical expressions based on symbolic function approximation methods. Through experiments with synthetic and real datasets, we demonstrate that our approach produces a channel metamodel of the data-driven channel model for each dataset that is highly accurate and allows us to easily explain the data-driven channel model and to understand the underlying channel characteristics.
引用
收藏
页码:2678 / 2682
页数:5
相关论文
共 50 条
  • [1] Enhanced Data-Driven LoRa LP-WAN Channel Model in Birmingham
    ElSabaa, AlaaAllah
    Gueniat, Florimond
    Wu, Wenyan
    Ward, Michael
    [J]. 2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 766 - 772
  • [2] Data-Driven Channel Modeling Using Spectrum Measurement
    Sheng, Shang-Pin
    Liu, Mingyan
    Saigal, Romesh
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2015, 14 (09) : 1794 - 1805
  • [3] Bayesian synergistic metamodeling (BSM) for physical information infused data-driven metamodeling
    Kuok, Sin -Chi
    Yuen, Ka-Veng
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 419
  • [4] An Atmospheric Data-Driven Q-Band Satellite Channel Model With Feature Selection
    Bai, Lu
    Xu, Qian
    Huang, Ziwei
    Wu, Shangbin
    Ventouras, Spiros
    Goussetis, George
    Cheng, Xiang
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (06) : 4002 - 4013
  • [5] End-to-end Learning for Optical Fiber Communication with Data-driven Channel Model
    Li, Mingliang
    Wang, Danshi
    Cui, Qichuan
    Zhang, Zhiguo
    Deng, Linhai
    Zhang, Min
    [J]. 2020 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2020), 2020,
  • [6] Towards a Multi-Channel Service Delivery model in the data-driven puulic sector
    Agbozo, Ebenezer
    Medvedev, Alexander N.
    [J]. BIZNES INFORMATIKA-BUSINESS INFORMATICS, 2020, 14 (01): : 41 - 50
  • [7] Model-Based and Data-Driven Approaches for Downlink Massive MIMO Channel Estimation
    Ghazanfari, Amin
    Trinh Van Chien
    Bjornson, Emil
    Larsson, Erik G.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (03) : 2085 - 2101
  • [8] Data-Driven Simulations of the Lightning Return Stroke Channel Properties
    Taylor, Michael C.
    da Silva, Caitano L.
    Walker, T. Daniel
    Christian, Hugh J.
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2022, 64 (05) : 1461 - 1469
  • [9] Data-Driven Output Channel Design for Maximizing Passivity Index
    Tanemura, Masaya
    Azuma, Shun-ichi
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6646 - 6650
  • [10] Data-Driven Synthesis of Provably Sound Side Channel Analyses
    Wang, Jingbo
    Sung, Chungha
    Raghothaman, Mukund
    Wang, Chao
    [J]. 2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2021), 2021, : 810 - 822