Ab initio quality neural-network potential for sodium

被引:114
|
作者
Eshet, Hagai [1 ]
Khaliullin, Rustam Z. [1 ]
Kuehne, Thomas D. [2 ,3 ,4 ]
Behler, Joerg [5 ]
Parrinello, Michele [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-6900 Lugano, Switzerland
[2] Inst Phys Chem, D-55128 Mainz, Germany
[3] Ctr Computat Sci, D-55128 Mainz, Germany
[4] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany
[5] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 18期
关键词
EMBEDDED-ATOM METHOD; MOLECULAR-DYNAMICS SIMULATION; ELASTIC-CONSTANTS; ENERGY SURFACES; 1ST PRINCIPLES; LIQUID-SODIUM; CUBIC METALS; ALKALI-METALS; BCC METALS; PRESSURE;
D O I
10.1103/PhysRevB.81.184107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An interatomic potential for high-pressure high-temperature (HPHT) crystalline and liquid phases of sodium is created using a neural-network (NN) representation of the ab initio potential-energy surface. It is demonstrated that the NN potential provides an ab initio quality description of multiple properties of liquid sodium and bcc, fcc, and cI16 crystal phases in the P-T region up to 120 GPa and 1200 K. The unique combination of computational efficiency of the NN potential and its ability to reproduce quantitatively experimental properties of sodium in the wide P-T range enables molecular-dynamics simulations of physicochemical processes in HPHT sodium of unprecedented quality.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ab initio quantum chemistry with neural-network wavefunctions
    Jan Hermann
    James Spencer
    Kenny Choo
    Antonio Mezzacapo
    W. M. C. Foulkes
    David Pfau
    Giuseppe Carleo
    Frank Noé
    [J]. Nature Reviews Chemistry, 2023, 7 : 692 - 709
  • [2] Ab initio quantum chemistry with neural-network wavefunctions
    Hermann, Jan
    Spencer, James
    Choo, Kenny
    Mezzacapo, Antonio
    Foulkes, W. M. C.
    Pfau, David
    Carleo, Giuseppe
    Noe, Frank
    [J]. NATURE REVIEWS CHEMISTRY, 2023, 7 (10) : 692 - 709
  • [3] Autoregressive neural-network wavefunctions for ab initio quantum chemistry
    Barrett, Thomas D.
    Malyshev, Aleksei
    Lvovsky, A., I
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (04) : 351 - 358
  • [4] Autoregressive neural-network wavefunctions for ab initio quantum chemistry
    Thomas D. Barrett
    Aleksei Malyshev
    A. I. Lvovsky
    [J]. Nature Machine Intelligence, 2022, 4 : 351 - 358
  • [5] Fermionic neural-network states for ab-initio electronic structure
    Kenny Choo
    Antonio Mezzacapo
    Giuseppe Carleo
    [J]. Nature Communications, 11
  • [6] Fermionic neural-network states for ab-initio electronic structure
    Choo, Kenny
    Mezzacapo, Antonio
    Carleo, Giuseppe
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface
    Khaliullin, Rustam Z.
    Eshet, Hagai
    Kuehne, Thomas D.
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW B, 2010, 81 (10):
  • [8] A neural-network potential for aluminum
    Akhmerov, R. F.
    Piyanzina, I. I.
    Nedopekin, O. V.
    Eyert, V.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [9] Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation
    Cuny, Jerome
    Xie, Yu
    Pickard, Chris J.
    Hassanali, Ali A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (02) : 765 - 773
  • [10] Modeling the Solvation and Acidity of Carboxylic Acids Using an Ab Initio Neural Network Potential
    Selloni, Annabella
    Raman, Abhinav S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (40): : 7283 - 7290