Fermionic neural-network states for ab-initio electronic structure

被引:136
|
作者
Choo, Kenny [1 ]
Mezzacapo, Antonio [2 ]
Carleo, Giuseppe [3 ]
机构
[1] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] IBM Corp, Thomas J Watson Res Ctr, POB 704, Yorktown Hts, NY 10598 USA
[3] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
基金
欧盟地平线“2020”;
关键词
MANY-BODY PROBLEM; MONTE-CARLO; QUANTUM;
D O I
10.1038/s41467-020-15724-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neural-network quantum states have been successfully used to study a variety of lattice and continuous-space problems. Despite a great deal of general methodological developments, representing fermionic matter is however still early research activity. Here we present an extension of neural-network quantum states to model interacting fermionic problems. Borrowing techniques from quantum simulation, we directly map fermionic degrees of freedom to spin ones, and then use neural-network quantum states to perform electronic structure calculations. For several diatomic molecules in a minimal basis set, we benchmark our approach against widely used coupled cluster methods, as well as many-body variational states. On some test molecules, we systematically improve upon coupled cluster methods and Jastrow wave functions, reaching chemical accuracy or better. Finally, we discuss routes for future developments and improvements of the methods presented. Despite the importance of neural-network quantum states, representing fermionic matter is yet to be fully achieved. Here the authors map fermionic degrees of freedom to spin ones and use neural-networks to perform electronic structure calculations on model diatomic molecules to achieve chemical accuracy.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Fermionic neural-network states for ab-initio electronic structure
    Kenny Choo
    Antonio Mezzacapo
    Giuseppe Carleo
    [J]. Nature Communications, 11
  • [2] Ab-initio study of electronic structure of ScAuSn
    Ugur, S.
    Ugur, G.
    Soyalp, F.
    [J]. SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 667 - 667
  • [3] Ab initio quantum chemistry with neural-network wavefunctions
    Jan Hermann
    James Spencer
    Kenny Choo
    Antonio Mezzacapo
    W. M. C. Foulkes
    David Pfau
    Giuseppe Carleo
    Frank Noé
    [J]. Nature Reviews Chemistry, 2023, 7 : 692 - 709
  • [4] Ab initio quantum chemistry with neural-network wavefunctions
    Hermann, Jan
    Spencer, James
    Choo, Kenny
    Mezzacapo, Antonio
    Foulkes, W. M. C.
    Pfau, David
    Carleo, Giuseppe
    Noe, Frank
    [J]. NATURE REVIEWS CHEMISTRY, 2023, 7 (10) : 692 - 709
  • [5] Ab initio quality neural-network potential for sodium
    Eshet, Hagai
    Khaliullin, Rustam Z.
    Kuehne, Thomas D.
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW B, 2010, 81 (18):
  • [6] EXPLORING AB-INITIO ELECTRONIC-STRUCTURE METHODS
    FOX, D
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 3 - ENVR
  • [7] AB-INITIO STUDY OF ELECTRONIC-STRUCTURE OF DIIMIDE
    AHLRICHS, R
    STAEMMLER, V
    [J]. CHEMICAL PHYSICS LETTERS, 1976, 37 (01) : 77 - 81
  • [8] Autoregressive neural-network wavefunctions for ab initio quantum chemistry
    Barrett, Thomas D.
    Malyshev, Aleksei
    Lvovsky, A., I
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (04) : 351 - 358
  • [9] Autoregressive neural-network wavefunctions for ab initio quantum chemistry
    Thomas D. Barrett
    Aleksei Malyshev
    A. I. Lvovsky
    [J]. Nature Machine Intelligence, 2022, 4 : 351 - 358
  • [10] Bipyridinium molecular switch:: Ab-initio electronic structure calculation
    Majumder, C
    Mizuseki, H
    Kawazoe, Y
    [J]. MATERIALS TRANSACTIONS, 2001, 42 (11) : 2276 - 2278