ON A NON-LOCAL PROBLEM FOR A MULTI-TERM FRACTIONAL DIFFUSION-WAVE EQUATION

被引:28
|
作者
Ruzhansky, Michael [1 ,2 ]
Tokmagambetov, Niyaz [1 ,3 ,4 ]
Torebek, Berikbol T. [1 ,3 ,4 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281,Bldg S8, B-9000 Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Al Farabi Kazakh Natl Univ, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
time-fractional diffusion-wave equation; Caputo derivative; nonlocal-initial problem; multivariate Mittag-Leffler function; self-adjoint operator; BOUNDARY-VALUE-PROBLEMS; WEAK SOLUTIONS; OPERATORS; PRINCIPLE;
D O I
10.1515/fca-2020-0016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the multi-term generalisation of the time-fractional diffusion-wave equation for general operators with discrete spectrum, as well as for positive hypoelliptic operators, with homogeneous multi-point time-nonlocal conditions. Several examples of the settings where our nonlocal problems are applicable are given. The results for the discrete spectrum are also applied to treat the case of general homogeneous hypoelliptic left-invariant differential operators on general graded Lie groups, by using the representation theory of the group. For all these problems, we show the existence, uniqueness, and the explicit representation formulae for the solutions.
引用
收藏
页码:324 / 355
页数:32
相关论文
共 50 条
  • [21] Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain
    Jiang, H.
    Liu, F.
    Turner, I.
    Burrage, K.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3377 - 3388
  • [22] A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients
    Chen, Hu
    Lu, Shujuan
    Chen, Wenping
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 380 - 397
  • [23] A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation
    Ezz-Eldien, S. S.
    Doha, E. H.
    Wang, Y.
    Cai, W.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91
  • [24] An alternating direction implicit compact finite difference scheme for the multi-term time-fractional mixed diffusion and diffusion-wave equation
    Cui, Mingrong
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 213 : 194 - 210
  • [25] Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions
    Liu, Xiao-jing
    Wang, Ji-zeng
    Wang, Xiao-min
    Zhou, You-he
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (01) : 49 - 62
  • [26] Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions
    Xiao-jing Liu
    Ji-zeng Wang
    Xiao-min Wang
    You-he Zhou
    [J]. Applied Mathematics and Mechanics, 2014, 35 : 49 - 62
  • [27] Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method
    Daftardar-Gejji, Varsha
    Bhalekar, Sachin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 113 - 120
  • [28] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Meng Li
    Chengming Huang
    Wanyuan Ming
    [J]. Computational and Applied Mathematics, 2018, 37 : 2309 - 2334
  • [29] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Li, Meng
    Huang, Chengming
    Ming, Wanyuan
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2309 - 2334
  • [30] H3N3-2σ-based difference schemes for time multi-term fractional diffusion-wave equation
    Du, Ruilian
    Li, Changpin
    Su, Fang
    Sun, Zhi-zhong
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (08):