ON A NON-LOCAL PROBLEM FOR A MULTI-TERM FRACTIONAL DIFFUSION-WAVE EQUATION

被引:28
|
作者
Ruzhansky, Michael [1 ,2 ]
Tokmagambetov, Niyaz [1 ,3 ,4 ]
Torebek, Berikbol T. [1 ,3 ,4 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281,Bldg S8, B-9000 Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Al Farabi Kazakh Natl Univ, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
time-fractional diffusion-wave equation; Caputo derivative; nonlocal-initial problem; multivariate Mittag-Leffler function; self-adjoint operator; BOUNDARY-VALUE-PROBLEMS; WEAK SOLUTIONS; OPERATORS; PRINCIPLE;
D O I
10.1515/fca-2020-0016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the multi-term generalisation of the time-fractional diffusion-wave equation for general operators with discrete spectrum, as well as for positive hypoelliptic operators, with homogeneous multi-point time-nonlocal conditions. Several examples of the settings where our nonlocal problems are applicable are given. The results for the discrete spectrum are also applied to treat the case of general homogeneous hypoelliptic left-invariant differential operators on general graded Lie groups, by using the representation theory of the group. For all these problems, we show the existence, uniqueness, and the explicit representation formulae for the solutions.
引用
收藏
页码:324 / 355
页数:32
相关论文
共 50 条
  • [1] On a Non–Local Problem for a Multi–Term Fractional Diffusion-Wave Equation
    Michael Ruzhansky
    Niyaz Tokmagambetov
    Berikbol T. Torebek
    [J]. Fractional Calculus and Applied Analysis, 2020, 23 : 324 - 355
  • [2] A wavelet approach for the multi-term time fractional diffusion-wave equation
    Sarvestani, F. Soltani
    Heydari, M. H.
    Niknam, A.
    Avazzadeh, Z.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 640 - 661
  • [3] Efficient Numerical Solution of the Multi-Term Time Fractional Diffusion-Wave Equation
    Ren, Jincheng
    Sun, Zhi-Zhong
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 1 - 28
  • [4] A fractional diffusion-wave equation with non-local regularization for image denoising
    Zhang, Wei
    Li, Jiaojie
    Yang, Yupu
    [J]. SIGNAL PROCESSING, 2014, 103 : 6 - 15
  • [5] Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations
    Jalil Rashidinia
    Elham Mohmedi
    [J]. Computational and Applied Mathematics, 2020, 39
  • [6] Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations
    Rashidinia, Jalil
    Mohmedi, Elham
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [7] An algorithm for solving multi-term diffusion-wave equations of fractional order
    Jafari, M. A.
    Aminataei, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1091 - 1097
  • [8] On the solution of multi-term time fractional diffusion-wave equation involving ultra-hyperbolic operator
    Javed, Sehrish
    Malik, Salman A.
    [J]. PHYSICA SCRIPTA, 2024, 99 (03)
  • [9] A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    Haromi, Malih Farzi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 341 : 215 - 228
  • [10] Subordination approach to multi-term time-fractional diffusion-wave equations
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 179 - 192