Biclique graphs of split graphs

被引:2
|
作者
Groshaus, M. [1 ,2 ]
Guedes, A. L. P. [3 ]
Puppo, J. P. [4 ]
机构
[1] Univ Tecnol Fed Parana, Curitiba, Brazil
[2] Univ Buenos Aires, Buenos Aires, Argentina
[3] Univ Fed Parana, Curitiba, Brazil
[4] Univ Tecnol Nacl, Buenos Aires, Argentina
关键词
Bicliques; Biclique graphs; Split graphs; Biclique-complete; NP-complete; BIPARTITE GRAPHS; CLIQUE GRAPHS;
D O I
10.1016/j.dam.2021.12.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The biclique graph is the intersection graph of the bicliques of a graph. Its recognition problem is still open. In this paper we study the problem restricted to the class of split graphs. We define a class called nested separable split graphs and solve the recognition problem of biclique graphs of a subclass of the mentioned class. For that, we give a polynomial time algorithm with positive certificate. We also characterize nested split graphs and study properties of biclique graphs of split graphs. For example, we show that they are Hamiltonian. We also present a complexity result for recognizing graphs such that their biclique graphs are complete graphs, that is, we prove that the problem of recognizing biclique-complete graphs in co -NP-complete.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 267
页数:16
相关论文
共 50 条
  • [1] Biclique Graphs and Biclique Matrices
    Groshaus, Marina
    Szwarcfiter, Jayme L.
    [J]. JOURNAL OF GRAPH THEORY, 2010, 63 (01) : 1 - 16
  • [2] Biclique Graphs of K3-free Graphs and Bipartite Graphs
    Groshaus, Marina
    Guedes, Andre L. P.
    [J]. PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 230 - 238
  • [3] Biclique graphs of interval bigraphs
    Cruz, E. P.
    Groshaus, M.
    Guedes, A. L. P.
    Puppo, J. P.
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 281 : 134 - 143
  • [4] On some conjectures on biclique graphs☆
    Liang, Yanfang
    Wu, Baoyindureng
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 343 : 184 - 190
  • [5] Vertex removal in biclique graphs
    Montero, Leandro
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 323 : 302 - 310
  • [6] Biclique-Helly graphs
    Groshaus, Marina
    Szwarcfiter, Jayme L.
    [J]. GRAPHS AND COMBINATORICS, 2007, 23 (06) : 633 - 645
  • [7] BICLIQUE NEIGHBORHOOD POLYNOMIALS OF GRAPHS
    Lumpayao, Shiena Mae B.
    Rasid, Regimar A.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (07): : 581 - 588
  • [8] On some conjectures on biclique graphs
    Liang, Yanfang
    Wu, Baoyindureng
    [J]. Discrete Applied Mathematics, 343 : 184 - 190
  • [9] Biclique-Helly Graphs
    Marina Groshaus
    Jayme L. Szwarcfiter
    [J]. Graphs and Combinatorics, 2007, 23 : 633 - 645
  • [10] Biclique: an R package for maximal biclique enumeration in bipartite graphs
    Yuping Lu
    Charles A. Phillips
    Michael A. Langston
    [J]. BMC Research Notes, 13