Biclique graphs of interval bigraphs

被引:5
|
作者
Cruz, E. P. [1 ]
Groshaus, M. [2 ]
Guedes, A. L. P. [1 ]
Puppo, J. P. [3 ]
机构
[1] Univ Fed Parana, Curitiba, Parana, Brazil
[2] Univ Tecnol Fed Parana, Apucarana, Brazil
[3] Univ Tecnol Nacl, Buenos Aires, DF, Argentina
关键词
Bicliques; Biclique graphs; Interval bigraphs; Bipartite permutation graphs; Co-comparability graphs; CLIQUE GRAPHS; ROOTS;
D O I
10.1016/j.dam.2020.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The biclique graph KB(G) is the intersection graph of all the bicliques of a graph G. The aim of our work is to recognize graphs that are biclique graphs of interval bigraphs (IBG). In this paper we prove that KB(IBG). K-1,K-4-free co-comparability graphs. We also study the class of biclique graphs of proper interval bigraphs (PIB). Recall that PIB is equal to the class of bipartite permutation graphs (BPG). We present a characterization of the class KB(PIB) and of the biclique graphs of a subclass of PIB that leads to a polynomial time recognition algorithm. We also present characterizations of biclique graphs of some classes such as complete graphs, trees and graphs with girth at least 5. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 50 条
  • [1] Interval bigraphs and circular arc graphs
    Hell, P
    Huang, J
    [J]. JOURNAL OF GRAPH THEORY, 2004, 46 (04) : 313 - 327
  • [2] Bipartite probe interval graphs, circular arc graphs, and interval point bigraphs
    Brown, David E.
    Lundgren, J. Richard
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 221 - 236
  • [3] Interval bigraphs are unit grid intersection graphs
    Richerby, David
    [J]. DISCRETE MATHEMATICS, 2009, 309 (06) : 1718 - 1719
  • [4] Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs
    Hell, P
    Huang, J
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (03) : 554 - 570
  • [5] Biclique Graphs and Biclique Matrices
    Groshaus, Marina
    Szwarcfiter, Jayme L.
    [J]. JOURNAL OF GRAPH THEORY, 2010, 63 (01) : 1 - 16
  • [6] Biclique graphs of split graphs
    Groshaus, M.
    Guedes, A. L. P.
    Puppo, J. P.
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 323 : 252 - 267
  • [7] BICLIQUE COVERINGS OF REGULAR BIGRAPHS AND MINIMUM SEMIRING RANKS OF REGULAR MATRICES
    GREGORY, DA
    PULLMAN, NJ
    JONES, KF
    LUNDGREN, JR
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 51 (01) : 73 - 89
  • [8] RAMANUJAN TYPE GRAPHS AND BIGRAPHS
    Ballantine, Cristina M.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 78 - 82
  • [9] Permutation bigraphs and interval containments
    Saha, Pranab K.
    Basu, Asim
    Sen, Malay K.
    West, Douglas B.
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 175 : 71 - 78
  • [10] Mixed Unit Interval Bigraphs
    Das, Ashok Kumar
    Sahu, Rajkamal
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 15 - 29