Treating missing data in a clinical neuropsychological dataset -: Data imputation

被引:4
|
作者
Närhi, V
Laaksonen, S
Hietala, R
Ahonen, T
Lyyti, H
机构
[1] Univ Jyvaskyla, Dept Psychol, Niilo Maki Inst, SF-40351 Jyvaskyla, Finland
[2] Stat Finland, Helsinki, Finland
[3] Univ Jyvaskyla, Child Res Ctr, Jyvaskyla, Finland
来源
CLINICAL NEUROPSYCHOLOGIST | 2001年 / 15卷 / 03期
基金
芬兰科学院;
关键词
D O I
10.1076/clin.15.3.380.10266
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Missing data frequently reduce the applicability of clinically collected data in research requiring multivariate statistics. In data imputation, missing values are replaced by predicted values obtained from models based on auxiliary information. Our aim was to complete a clinical child neuropsychological data set containing 5.2% of missing observations. This was to be used in research requiring multivariate statistics. We compared four data imputation methods by artificially deleting some data. A real-donor imputation method which preserved the parameter estimates and which predicted the observed values with acceptable accuracy was used to complete the data set. In addressing the lack of studies with regard to treatment of missing data in neuropsychological data sets, this study presents information on the outcomes of applying data imputation methods to such data. The imputation modeling described can be applied to a variety of clinical neuropsychological data sets.
引用
收藏
页码:380 / 392
页数:13
相关论文
共 50 条
  • [1] Evaluating Imputation Methods for Missing Data in a MCI Dataset
    Gomez-Valades Batanero, Alba
    Rincon Zamorano, Mariano
    Martinez Tomas, Rafael
    Guerrero Martin, Juan
    [J]. ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I, 2022, 13258 : 446 - 454
  • [2] Missing data imputation with fuzzy feature selection for diabetes dataset
    Mohamad Faiz Dzulkalnine
    Roselina Sallehuddin
    [J]. SN Applied Sciences, 2019, 1
  • [3] Missing data imputation with fuzzy feature selection for diabetes dataset
    Dzulkalnine, Mohamad Faiz
    Sallehuddin, Roselina
    [J]. SN APPLIED SCIENCES, 2019, 1 (04):
  • [4] Evaluating the state of the art in missing data imputation for clinical data
    Luo, Yuan
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [5] IMPUTATION OF MISSING DATA
    Lunt, M.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 49 - 49
  • [6] A Hybrid Missing Data Imputation Method for Batch Process Monitoring Dataset
    Gan, Qihong
    Gong, Lang
    Hu, Dasha
    Jiang, Yuming
    Ding, Xuefeng
    [J]. SENSORS, 2023, 23 (21)
  • [7] Missing Data: data replacement and imputation
    Hutcheson, Graeme
    Pampaka, Maria
    [J]. JOURNAL OF MODELLING IN MANAGEMENT, 2012, 7 (02)
  • [8] Missing Data in Clinical Research: A Tutorial on Multiple Imputation
    Austin, Peter C.
    White, Ian R.
    Lee, Douglas S.
    van Buuren, Stef
    [J]. CANADIAN JOURNAL OF CARDIOLOGY, 2021, 37 (09) : 1322 - 1331
  • [9] Missing data and multiple imputation in clinical epidemiological research
    Pedersen, Alma B.
    Mikkelsen, Ellen M.
    Cronin-Fenton, Deirdre
    Kristensen, Nickolaj R.
    Tra My Pham
    Pedersen, Lars
    Petersen, Irene
    [J]. CLINICAL EPIDEMIOLOGY, 2017, 9 : 157 - 165
  • [10] Missing Data and Imputation Methods
    Schober, Patrick
    Vetter, Thomas R.
    [J]. ANESTHESIA AND ANALGESIA, 2020, 131 (05): : 1419 - 1420