A new procedure with iteration methods to solve a nonlinear two dimensional Bogoyavlensky-Konopelchenko equation

被引:3
|
作者
Mohammed, Amal Jasim [1 ]
Qasim, Ahmed Farooq [2 ]
机构
[1] Univ Mosul, Coll Educ Pure Sci, Dept Math, Mosul, Iraq
[2] Univ Mosul, Coll Comp Sci & Math, Dept Math, Mosul, Iraq
关键词
New iteration method; Homotopy analysis method; Genetic Algorithm; Nonlinear partial differential equation; Bogoyavlensky-Konopelchenko equation; LUMP SOLUTIONS; TRANSFORM METHOD; ALGORITHM; SYSTEM;
D O I
10.1080/09720502.2021.2000156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New iteration and Homotopy analysis methods are used to obtain the approximate solution to the nonlinear two dimensional Bogoyavlensky-Konopelchenko equation. A procedure called Multi-objective Genetic algorithm is used to find the right nonlinear coefficients for the two dimensional partial differential equation. The numerical simulations of the techniques in this paper and the outcomes which are compared with the exact solution are sufficient to show the effectivness of this technique.
引用
收藏
页码:537 / 552
页数:16
相关论文
共 50 条
  • [21] Some more variety of analytical solutions to (2+1)-Bogoyavlensky-Konopelchenko equation
    Kumar, Raj
    Pandey, Kripa Shankar
    Yadav, Shiv Kumar
    Kumar, Avneesh
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [22] Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation
    Manafian, Jalil
    Ivatloo, Behnam Mohammadi
    Abapour, Mehdi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (04) : 1753 - 1774
  • [23] Dynamics of soliton and mixed lump-soliton waves to a generalized Bogoyavlensky-Konopelchenko equation
    Ismael, Hajar F.
    Ma, Wen-Xiu
    Bulut, Hasan
    PHYSICA SCRIPTA, 2021, 96 (03)
  • [24] Analytical solutions and dynamical behaviors of the extended Bogoyavlensky-Konopelchenko equation in deep water dynamics
    Jhangeer, Adil
    Beenish, Abdallah M.
    Talafha, Abdallah M.
    Ansari, Ali R.
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [25] Lie symmetry analysis and reduction for exact solution of (2+1)-dimensional Bogoyavlensky-Konopelchenko equation by geometric approach
    Ray, S. Saha
    MODERN PHYSICS LETTERS B, 2018, 32 (11):
  • [26] An expansion method for generating travelling wave solutions for the (2+1)-dimensional Bogoyavlensky-Konopelchenko equation with variable coefficients
    Yokus, Asif
    Duran, Serbay
    Kaya, Dogan
    CHAOS SOLITONS & FRACTALS, 2024, 178
  • [27] Lump Solutions for Two Mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko Equations
    任博
    马文秀
    俞军
    Communications in Theoretical Physics, 2019, 71 (06) : 658 - 662
  • [28] Exact wave solutions of new generalized Bogoyavlensky-Konopelchenko model in fluid mechanics
    Seadawy, Aly R.
    Ali, Asghar
    Bekir, Ahmet
    MODERN PHYSICS LETTERS B, 2024, 38 (27):
  • [29] Lump Solutions for Two Mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko Equations
    Ren, Bo
    Ma, Wen-Xiu
    Yu, Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (06) : 658 - 662
  • [30] Quasi-periodic wave solutions, soliton solutions, and integrability to a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation
    Yan, Hui
    Tian, Shou-Fu
    Feng, Lian-Li
    Zhang, Tian-Tian
    WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (04) : 444 - 457