Hypercyclicity of Composition Operators on Banach Spaces of Analytic Functions

被引:9
|
作者
Colonna, Flavia [1 ]
Martinez-Avendano, Ruben A. [1 ,2 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
[2] Univ Autonoma Estado Hidalgo, Ctr Invest Matemat, Pachuca, Hidalgo, Mexico
关键词
Composition operators; Hypercyclicity; Hardy space; Bergman space; Bloch space; Besov space; BMOA; Weighted Dirichlet space; Zygmund space; THEOREM; HARDY;
D O I
10.1007/s11785-017-0656-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that there exist hypercyclic composition operators on the Hardy spaces for and a host of other Banach spaces of analytic functions. In this work, we give a classification of a large class of separable Banach spaces X of analytic functions on the open unit disk according to whether or not hypercyclic composition operators on X exist. We highlight how the use of the Hypercyclicity Comparison Principle and information on the relationship among such spaces, paired with known results in the literature, allow us to extend them to many other spaces. Examples of spaces for which no hypercyclic composition operators exist are the little -Bloch spaces for , the analytic Besov spaces, the space of analytic functions of vanishing mean oscillation, the spaces of analytic functions whose derivative belongs to the Hardy space for , and some weighted Dirichlet spaces. By contrast, the little -Bloch spaces for , all weighted Bergman spaces with weight (, ), and a class of weighted Dirichlet spaces, mimic the behavior of the Hardy spaces.
引用
收藏
页码:305 / 323
页数:19
相关论文
共 50 条
  • [41] Pointwise multiplication operators on weighted Banach spaces of analytic functions
    Bonet, J
    Domanski, P
    Lindström, M
    [J]. STUDIA MATHEMATICA, 1999, 137 (02) : 177 - 194
  • [42] Volterra operators and semigroups in weighted Banach spaces of analytic functions
    Manuela Basallote
    Manuel D. Contreras
    Carmen Hernández-Mancera
    María J. Martín
    Pedro J. Paúl
    [J]. Collectanea Mathematica, 2014, 65 : 233 - 249
  • [43] GENERALIZED INTEGRATION OPERATORS ON SOME BANACH SPACES OF ANALYTIC FUNCTIONS
    Li, Mingshan
    Wang, Zhenyou
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (03) : 339 - 353
  • [44] Non-Weakly Supercyclic Classes of Weighted Composition Operators on Banach Spaces of Analytic Functions
    Moradi, A.
    Robati, B. Khani
    Hedayatian, K.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 227 - 241
  • [45] HYPERCYCLICITY OF CONVOLUTION OPERATORS ON SPACES OF ENTIRE FUNCTIONS
    Bertoloto, F. J.
    Botelho, G.
    Favaro, V. V.
    Jatoba, A. M.
    [J]. ANNALES DE L INSTITUT FOURIER, 2013, 63 (04) : 1263 - 1283
  • [46] Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions
    Colonna, Flavia
    Tjani, Maria
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) : 93 - 124
  • [47] SEMIGROUPS OF COMPOSITION OPERATORS AND INTEGRAL OPERATORS IN SPACES OF ANALYTIC FUNCTIONS
    Blasco, Oscar
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    Martinez, Josep
    Papadimitrakis, Michael
    Siskakis, Aristomenis G.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) : 67 - 89
  • [48] The iterates of composition operators on Banach spaces of holomorphic functions
    Pham Trong Tien
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (01)
  • [49] Composition operators on weighted Banach spaces of entire functions
    Tien, Pham Trong
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (09) : 1517 - 1533
  • [50] Topological structures of the spaces of composition operators on spaces of analytic functions
    Manhas, J. S.
    [J]. FUNCTION SPACES, 2007, 435 : 283 - 299