Modelling of 1-D pure advection processes using artificial neural networks

被引:0
|
作者
Minns, AW [1 ]
机构
[1] Int Inst Infrastruct Hydraul & Environm Engn, Delft, Netherlands
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using the results of some simple numerical experiments, it has been shown that, in the simplest case of one-dimensional pure advection with a constant velocity, a linear artificial neural network (ANN) is capable of learning the exact solution, which is also exactly equivalent to the differential equation description. In this way, the ANN is being used as numerical operator that contains the same knowledge, or has the same semantic content, as the governing partial differential equations.
引用
收藏
页码:805 / 812
页数:8
相关论文
共 50 条
  • [41] Using artificial neural networks in pressure decomposition modelling in distribution gas networks
    Kogut, Krzysztof
    GOSPODARKA SUROWCAMI MINERALNYMI-MINERAL RESOURCES MANAGEMENT, 2008, 24 (03): : 157 - 166
  • [42] Modelling 1-D signals using Hermite basis functions
    Rasiah, AI
    Togneri, R
    Attikiouzel, Y
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1997, 144 (06): : 345 - 354
  • [44] 1-D compact neural networks for wireless communication and mobile computing
    Sheu, BJ
    Chen, DC
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 551 - 554
  • [45] ECG Heartbeats Classification Based on 1-D Convolutional Neural Networks
    El Bouny, Lahcen
    Khalil, Mohammed
    Adib, Abdellah
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 1, 2022, 1417 : 697 - 708
  • [46] Artificial Neural Network Method for the Analysis of 1-D Defected Ground Structure
    Wang, Shan
    Jiang, Yang
    Gao, Minghua
    Wang, Chuanyun
    Liu, Haiwen
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 786 - 788
  • [47] Seismic vulnerability modelling of building portfolios using artificial neural networks
    Kalakonas, Petros
    Silva, Vitor
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2022, 51 (02): : 310 - 327
  • [48] PEM Fuel Cell Modelling Using Artificial Neural Networks (ANN)
    Belmokhtar, K.
    Doumbia, M. L.
    Agboussou, K.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2014, 4 (03): : 725 - 730
  • [49] Single station modelling of ionospheric irregularities using artificial neural networks
    Valence Habyarimana
    John Bosco Habarulema
    Daniel Okoh
    Teshome Dugassa
    Jean Claude Uwamahoro
    Astrophysics and Space Science, 2023, 368
  • [50] Monthly rainfall-runoff modelling using artificial neural networks
    Machado, Fernando
    Mine, Miriam
    Kaviski, Eloy
    Fill, Heinz
    HYDROLOGICAL SCIENCES JOURNAL, 2011, 56 (03) : 349 - 361