An Early Detection of Android Malware Using System Calls based Machine Learning Model

被引:10
|
作者
Zhang, Xinrun [1 ]
Mathur, Akshay [2 ]
Zhao, Lei [1 ]
Rahmat, Safia [2 ]
Niyaz, Quamar [1 ]
Javaid, Ahmad [2 ]
Yang, Xiaoli [1 ]
机构
[1] Purdue Univ Northwest, Hammond, IN 46323 USA
[2] Univ Toledo, 2801 W Bancroft St, Toledo, OH 43606 USA
关键词
Android malware detection; smartphone security; system call analysis;
D O I
10.1145/3538969.3544413
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Several host intrusion detection systems (HIDSs) based on system call analysis have been proposed in the past to detect intrusions and malware using relevant datasets. Machine learning (ML) techniques have been applied on those datasets to improve the performances of HIDSs. However, the emphasis given on their real-world deployment is limited. To address this issue, we propose a framework for system call processing for benign and malware Android apps with an ability of early detection of malware. We extracted and analyzed system call traces for benign and malware apps, and processed their system call traces with N-gram and TF-IDF models. Six ML algorithms - Decision Trees, Random Forest, K-Nearest Neighbors, Naive Bayes, Support Vector Machines, and Multi-layer Perceptron - were trained for the malware detection system. The experimental results demonstrate that our Android malware detection system (AMDS), using traces of 3000 system calls, is capable of early detection with an average accuracy of 99.34%. We also implemented an Android app based on a client-server architecture for the proposed AMDS to demonstrate its deployment for malware detection in real-time.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Machine Learning for Android Malware Detection Using Permission and API Calls
    Peiravian, Naser
    Zhu, Xingquan
    [J]. 2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 300 - 305
  • [2] Android Malware Detection based on Useful API Calls and Machine Learning
    Jung, Jaemin
    Kim, Hyunjin
    Shin, Dongjin
    Lee, Myeonggeon
    Lee, Hyunjae
    Cho, Seong-je
    Suh, Kyoungwon
    [J]. 2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 175 - 178
  • [3] An Android Malware Detection System Based on Machine Learning
    Wen, Long
    Yu, Haiyang
    [J]. GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [4] Androhealthcheck: A malware detection system for android using machine learning
    Agrawal, Prerna
    Trivedi, Bhushan
    [J]. Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 35 - 41
  • [5] Evaluation of Android Malware Detection Based on System Calls
    Dimjasevic, Marko
    Atzeni, Simone
    Rakamaric, Zvonimir
    Ugrina, Ivo
    [J]. IWSPA'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, 2016, : 1 - 8
  • [6] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    [J]. 2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [7] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    [J]. 2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [8] Permission-Based Malware Detection System for Android Using Machine Learning Techniques
    Arslan, Recep Sinan
    Dogru, Ibrahim Alper
    Barisci, Necaattin
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2019, 29 (01) : 43 - 61
  • [9] Android Malware Detection Using API Calls: A Comparison of Feature Selection and Machine Learning Models
    Muzaffar, Ali
    Hassen, Hani Ragab
    Lones, Michael A.
    Zantout, Hind
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON APPLIED CYBER SECURITY (ACS) 2021, 2022, 378 : 3 - 12
  • [10] Permissions-Based Detection of Android Malware Using Machine Learning
    Akbar, Fahad
    Hussain, Mehdi
    Mumtaz, Rafia
    Riaz, Qaiser
    Wahab, Ainuddin Wahid Abdul
    Jung, Ki-Hyun
    [J]. SYMMETRY-BASEL, 2022, 14 (04):