asymptotics of solutions;
nonlinear Klein-Gordon equations;
scattering operator;
higher space;
dimensions;
power nonlinearities;
D O I:
10.1016/j.jde.2007.10.002
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove the existence of the scattering operator in the neighborhood of the origin in the weighted Sobolev space H(beta, 1) with beta = max(3/2, 1 + 2/n) for the nonlinear Klein-Gordon equation with a power non-linearity u(tt) - Delta u + u = mu vertical bar u vertical bar(sigma -1)u, (t, x) epsilon R x R(n) where 1 + 4/n+2 < sigma < 1 + 4/n for n >= 3, mu epsilon C. (C) 2007 Elsevier Inc. All rights reserved.
机构:
Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, CR-18000 Prague, Czech RepublicCharles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, CR-18000 Prague, Czech Republic
Kolar, Ivan
Krtous, Pavel
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, CR-18000 Prague, Czech RepublicCharles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, CR-18000 Prague, Czech Republic