Scattering operator for nonlinear Klein-Gordon equations in higher space dimensions

被引:11
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Michoacan 58089, Mexico
关键词
asymptotics of solutions; nonlinear Klein-Gordon equations; scattering operator; higher space; dimensions; power nonlinearities;
D O I
10.1016/j.jde.2007.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of the scattering operator in the neighborhood of the origin in the weighted Sobolev space H(beta, 1) with beta = max(3/2, 1 + 2/n) for the nonlinear Klein-Gordon equation with a power non-linearity u(tt) - Delta u + u = mu vertical bar u vertical bar(sigma -1)u, (t, x) epsilon R x R(n) where 1 + 4/n+2 < sigma < 1 + 4/n for n >= 3, mu epsilon C. (C) 2007 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:188 / 199
页数:12
相关论文
共 50 条