共 50 条
Scattering operator for nonlinear Klein-Gordon equations in higher space dimensions
被引:11
|作者:
Hayashi, Nakao
[1
]
Naumkin, Pavel I.
[2
]
机构:
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Michoacan 58089, Mexico
关键词:
asymptotics of solutions;
nonlinear Klein-Gordon equations;
scattering operator;
higher space;
dimensions;
power nonlinearities;
D O I:
10.1016/j.jde.2007.10.002
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove the existence of the scattering operator in the neighborhood of the origin in the weighted Sobolev space H(beta, 1) with beta = max(3/2, 1 + 2/n) for the nonlinear Klein-Gordon equation with a power non-linearity u(tt) - Delta u + u = mu vertical bar u vertical bar(sigma -1)u, (t, x) epsilon R x R(n) where 1 + 4/n+2 < sigma < 1 + 4/n for n >= 3, mu epsilon C. (C) 2007 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:188 / 199
页数:12
相关论文