Electrochemical CO2 reduction: from nanoclusters to single atom catalysts

被引:76
|
作者
Lu, Fang [1 ]
Bao, Haihong [1 ]
Mi, Yuying [1 ]
Liu, Yifan [2 ]
Sun, Jiaqiang [3 ]
Peng, Xianyun [1 ]
Qiu, Yuan [1 ]
Zhuo, Longchao [4 ]
Liu, Xijun [1 ]
Luo, Jun [1 ]
机构
[1] Tianjin Univ Technol, Tianjin Key Lab Adv Funct Porous Mat, Inst New Energy Mat & Low Carbon Technol, Ctr Electron Microscopy,Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Minist Educ & Guangdong Prov, Key Lab Optoelect Devices & Syst, Shenzhen 518060, Peoples R China
[3] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan, Peoples R China
[4] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
来源
SUSTAINABLE ENERGY & FUELS | 2020年 / 4卷 / 03期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SELECTIVE ELECTROCATALYTIC REDUCTION; N-DOPED CARBON; METAL-ELECTRODES; OXYGEN EVOLUTION; HIGHLY EFFICIENT; ELECTROREDUCTION PERFORMANCE; HYDROGEN EVOLUTION; CONVERSION; DIOXIDE; NANOPARTICLES;
D O I
10.1039/c9se00776h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The balance of the carbon cycle is destroyed by the increasing emissions of greenhouse gases into the Earth's atmosphere, which limits the sustainable development of human beings. Electrocatalytic reduction of CO2 under ambient conditions is an effective method to solve this issue by converting CO2 to value-added chemicals or fuels. In recent years, metal nanoclusters (NCs) and single atom catalysts (SACs) have received much attention in electrochemical energy conversion. In this review, we mainly focus on the electrocatalytic properties of noble metal and transition metal catalysts at a sub-nanometer or single-atom scale, with special attention paid to their catalytic activity and selectivity as well as the catalytic mechanism towards different products. Their main advantages and challenges are also highlighted. The purpose of this review is to give a comprehensive understanding and inspire further exploration of more effective catalysts for electrochemical CO2 reduction.
引用
收藏
页码:1012 / 1028
页数:17
相关论文
共 50 条
  • [31] S and N coordinated single-atom catalysts for electrochemical CO2 reduction with superior activity and selectivity
    Hou, Pengfei
    Huang, Yuhong
    Ma, Fei
    Wei, Xiumei
    Du, Ruhai
    Zhu, Gangqiang
    Zhang, Jianmin
    Wang, Min
    APPLIED SURFACE SCIENCE, 2023, 619
  • [32] Rational design of graphdiyne-based single-atom catalysts for electrochemical CO2 reduction reaction
    Jiang, Liyun
    Zhao, Mengdie
    Yu, Qi
    RSC ADVANCES, 2024, 14 (37) : 27365 - 27371
  • [33] The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction
    Qu, Qingyun
    Ji, Shufang
    Chen, Yuanjun
    Wang, Dingsheng
    Li, Yadong
    CHEMICAL SCIENCE, 2021, 12 (12) : 4201 - 4215
  • [34] Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction
    Jiang, Jian-Chao
    Chen, Jun-Chi
    Zhao, Meng-die
    Yu, Qi
    Wang, Yang-Gang
    Li, Jun
    NANO RESEARCH, 2022, 15 (08) : 7116 - 7123
  • [35] Control over Electrochemical CO2 Reduction Selectivity by Coordination Engineering of Tin Single-Atom Catalysts
    Guo, Jiangyi
    Zhang, Wenlin
    Zhang, Lu-Hua
    Chen, Datong
    Zhan, Jiayu
    Wang, Xueli
    Shiju, N. Raveendran
    Yu, Fengshou
    ADVANCED SCIENCE, 2021, 8 (23)
  • [36] Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO2 Reduction
    Han, Shu-Guo
    Ma, Dong-Dong
    Zhu, Qi-Long
    SMALL METHODS, 2021, 5 (08)
  • [37] Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction
    Jian-Chao Jiang
    Jun-Chi Chen
    Meng-die Zhao
    Qi Yu
    Yang-Gang Wang
    Jun Li
    Nano Research, 2022, 15 (8) : 7116 - 7123
  • [38] Single-Atom Catalysts on Covalent Organic Frameworks for CO2 Reduction
    Wang, Rui
    Yuan, Yufei
    Bang, Ki-Taek
    Kim, Yoonseob
    ACS MATERIALS AU, 2023, 3 (01): : 28 - 36
  • [39] CO2 reduction on single-atom Ir catalysts with chemical functionalization
    Lin, Zheng-Zhe
    Li, Xi-Mei
    Chen, Xin-Wei
    Chen, Xi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (06) : 3733 - 3740
  • [40] Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
    Shang, Ziang
    Feng, Xueting
    Chen, Guanzhen
    Qin, Rong
    Han, Yunhu
    SMALL, 2023, 19 (48)