Electrocatalytic generation of hydrogen peroxide on cobalt nanoparticles embedded in nitrogen-doped carbon

被引:19
|
作者
Rawah, Basil Sabri [1 ,2 ]
Li, Wenzhen [1 ]
机构
[1] Iowa State Univ, Chem & Biol Engn Dept, Biorenewables Res Lab, Ames, IA 50011 USA
[2] Univ Jeddah, Chem & Biol Engn Dept, Jeddah 23890, Saudi Arabia
关键词
Hydrogen peroxide; Two-electron oxygen reduction; Carbon catalyst; Electrocatalysis; OXYGEN REDUCTION; H2O2; SELECTIVITY; NANOTUBES; CATALYSIS; GRAPHENE; O-2;
D O I
10.1016/S1872-2067(21)63804-4
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrocatalytic reduction of oxygen is a growing synthetic technique for the sustainable production of hydrogen peroxide (H2O2). The current challenges concern seeking low-cost, highly active, and selective electrocatalysts. Cobalt-nitrogen-doped carbon containing catalytically active cobalt-nitrogen (Co-N-x) sites is an emerging class of materials that can promote the electrochemical generation of H2O2. Here, we report a straightforward method for the preparation of cobalt-nitrogen-doped carbon composed of a number of Co-N-x moieties using low-energy dry-state ball milling, followed by controlled pyrolysis. This scalable method uses inexpensive materials containing cobalt acetate, 2-methylimidazole, and Ketjenblack EC-600JD as the metal, nitrogen, and carbon precursors, respectively. Electrochemical measurements in an acidic medium show the present material exhibits a significant increase in the oxygen reduction reaction current density, accompanied by shifting the onset potential into the positive direction. The current catalyst has also demonstrated an approximate 90 % selectivity towards H2O2 across a wide range of potential. The H2O2 production rate, as measured by H2O2 bulk electrolysis, has reached 100 mmol g(cat.)(-1) h(-1) with high H2O2 faradaic efficiency close to 85% (for 2 h at 0.3 V vs. RHE). Lastly, the catalyst durability has been tested (for 6 h at 0.3 V vs. RHE). The catalyst has shown relatively consistent performance, while the overall faradic efficiency reaches approximate 85% throughout the test cycle indicating the promising catalyst durability for practical applications. The formed Co-N-x moieties, along with other parameters, including the acidic environment and the applied potential, likely are the primary reasons for such high activity and selectivity to H2O2 production. (c) 2021, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2296 / 2305
页数:10
相关论文
共 50 条
  • [41] Gold-Incorporated Cobalt Phosphide Nanoparticles on Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution Electrocatalysis
    Wang, Xiaoyan
    Fei, Yang
    Li, Wei
    Yi, Lingya
    Feng, Bomin
    Pan, Yixiang
    Hu, Weihua
    Li, Chang Ming
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) : 16548 - 16556
  • [42] Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution
    Xu, You
    Li, Yinghao
    Yin, Shuli
    Yu, Hongjie
    Xue, Hairong
    Li, Xiaonian
    Wang, Hongjing
    Wang, Liang
    NANOTECHNOLOGY, 2018, 29 (22)
  • [43] ZIF-Derived Cobalt Sulfides Embedded on Nitrogen-Doped Carbon Frameworks for Efficient Hydrogen Evolution Reaction
    Rhie, Joon Soo
    Do, Ha Huu
    Kim, Soo Young
    ELECTRONIC MATERIALS LETTERS, 2024, 20 (05) : 639 - 647
  • [44] Phosphorus modification of cobalt-iron nanoparticles embedded in a nitrogen-doped carbon network for oxygen reduction reaction
    Zhang, Rui
    Wang, Zheng
    Zhu, Lin
    Lv, Weixin
    Wang, Wei
    RSC ADVANCES, 2021, 11 (16) : 9450 - 9458
  • [45] Cobalt nanoparticles embedded in a nitrogen-doped carbon matrix for reductive amination of biomass-derived furfural to furfurylamine
    Yogita
    Rao, K. T. Venkateshwara
    Kumar, P. Mahesh
    Lingaiah, N.
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (20) : 4692 - 4705
  • [46] Highly dispersed cobalt nanoparticles onto nitrogen-doped carbon nanosheets for efficient hydrogen generation via catalytic hydrolysis of sodium borohydride
    Jiang, Jing
    Yang, Shiyu
    Lei, Huili
    Ai, Lunhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (64) : 32403 - 32412
  • [47] Crystalline Cobalt/Amorphous LaCoOx Hybrid Nanoparticles Embedded in Porous Nitrogen-Doped Carbon as Efficient Electrocatalysts for Hydrazine-Assisted Hydrogen Production
    Gao, Li
    Xie, Junfeng
    Liu, Shan-Shan
    Lou, Shanshan
    Wei, Zimeng
    Zhu, Xiaojiao
    Tang, Bo
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24701 - 24709
  • [48] Silver nanoparticles embedded in phosphorus and nitrogen-doped hierarchical hollow porous carbon for efficient supercapacitor and electrocatalytic water oxidation
    Mariappan, Athibala
    Dharman, Ranjith Kumar
    Oh, Tae Hwan
    Prabu, Samikannu
    Chiang, Kung-Yuh
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 671
  • [49] Selective and Continuous Electrosynthesis of Hydrogen Peroxide on Nitrogen-doped Carbon Supported Nickel
    Shen, Hangjia
    Pan, Longhai
    Thomas, Tiju
    Wang, Jiacheng
    Guo, Xuyun
    Zhu, Ye
    Luo, Kan
    Du, Shiyu
    Guo, Haichuan
    Hutchings, Graham J.
    Attfield, J. Paul
    Yang, Minghui
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (11):
  • [50] Encapsulation of Co nanoparticles with single-atomic Co sites into nitrogen-doped carbon for electrosynthesis of hydrogen peroxide
    Li, Kun
    Sun, Yanyan
    Zhao, Ziwei
    Zhu, Ting
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (04) : 3044 - 3050