Learning rates for SVM classifiers with polynomial kernels

被引:0
|
作者
Wu, Dan [1 ]
Cao, Feilong [1 ]
机构
[1] China Jiliang Univ, Dept Informat & Math Sci, Hangzhou 310018, Zhejiang Prov, Peoples R China
关键词
Regularized classifiers; Polynomial kernel; Modified Durrmeyer polynomials; Reproducing kernel Hilbert space; Learning rates; SOFT MARGIN CLASSIFIERS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The polynomial kernel is one of the most important kernels used in the learning theory. This paper provides an error analysis for the support vector machine (SVM) soft margin classifier with polynomial kernels. The learning rate is estimated by the sum of sample error and regularization error. As an important tool, so-called modified Durrmeyer polynomials are introduced. The norm of reproducing kernel Hilbert space generated by the polynomial kernels and the approximation properties of the operators play key roles in the analysis of the regularization error. Also, the explicit learning rates for the SVM regularized classifiers arc derived.
引用
收藏
页码:1111 / 1116
页数:6
相关论文
共 50 条
  • [21] LEARNING SVM WITH COMPLEX MULTIPLE KERNELS EVOLVED BY GENETIC PROGRAMMING
    Diosan, Laura
    Rogozan, Alexandrina
    Pecuchet, Jean-Pierre
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2010, 19 (05) : 647 - 677
  • [22] Bayesian learning of inverted Dirichlet mixtures for SVM kernels generation
    Bdiri, Taoufik
    Bouguila, Nizar
    [J]. NEURAL COMPUTING & APPLICATIONS, 2013, 23 (05): : 1443 - 1458
  • [23] Polynomial kernel adaptation and extensions to the SVM classifier learning
    Saad, Ramy
    Halgamuge, Saman K.
    Li, Jason
    [J]. NEURAL COMPUTING & APPLICATIONS, 2008, 17 (01): : 19 - 25
  • [24] Polynomial kernel adaptation and extensions to the SVM classifier learning
    Ramy Saad
    Saman K. Halgamuge
    Jason Li
    [J]. Neural Computing and Applications, 2008, 17 : 19 - 25
  • [25] Learning Kernels for Support Vector Machines with Polynomial Powers of Sigmoid
    Fernandes, Silas E. N.
    Pilastri, Andre Luiz
    Pereira, Luis A. M.
    Pires, Rafael G.
    Papa, Joao P.
    [J]. 2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 259 - 265
  • [26] Evaluation of ANN and SVM classifiers as predictors to the diagnosis of students with learning disabilities
    Wu, Tung-Kuang
    Huang, Shian-Chang
    Meng, Ying-Ru
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (03) : 1846 - 1856
  • [27] The aLS-SVM based multi-task learning classifiers
    Liyun Lu
    Qiang Lin
    Huimin Pei
    Ping Zhong
    [J]. Applied Intelligence, 2018, 48 : 2393 - 2407
  • [28] The aLS-SVM based multi-task learning classifiers
    Lu, Liyun
    Lin, Qiang
    Pei, Huimin
    Zhong, Ping
    [J]. APPLIED INTELLIGENCE, 2018, 48 (08) : 2393 - 2407
  • [29] Using an Hebbian learning rule for multi-class SVM classifiers
    Viéville, T
    Crahay, S
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2004, 17 (03) : 271 - 287
  • [30] Using an Hebbian Learning Rule for Multi-Class SVM Classifiers
    Thierry Viéville
    Sylvie Crahay
    [J]. Journal of Computational Neuroscience, 2004, 17 : 271 - 287