Two-Point Phase Correlations of a One-Dimensional Bosonic Josephson Junction

被引:73
|
作者
Betz, T. [1 ]
Manz, S. [1 ]
Buecker, R. [1 ]
Berrada, T. [1 ]
Koller, Ch. [1 ]
Kazakov, G. [2 ,3 ]
Mazets, I. E. [1 ,2 ,4 ]
Stimming, H. -P. [2 ]
Perrin, A. [1 ,2 ]
Schumm, T. [1 ,2 ]
Schmiedmayer, J. [1 ]
机构
[1] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1020 Vienna, Austria
[2] Univ Vienna, Wolfgang Pauli Inst, A-1090 Vienna, Austria
[3] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
[4] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
基金
奥地利科学基金会;
关键词
QUANTUM; OSCILLATIONS;
D O I
10.1103/PhysRevLett.106.020407
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We realize a one-dimensional Josephson junction using quantum degenerate Bose gases in a tunable double well potential on an atom chip. Matter wave interferometry gives direct access to the relative phase field, which reflects the interplay of thermally driven fluctuations and phase locking due to tunneling. The thermal equilibrium state is characterized by probing the full statistical distribution function of the two-point phase correlation. Comparison to a stochastic model allows us to measure the coupling strength and temperature and hence a full characterization of the system.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] One-dimensional localization of quantum vortices in disordered Josephson junction arrays
    vanOudenaarden, A
    Vardy, SJK
    Mooij, JE
    PHYSICAL REVIEW LETTERS, 1996, 77 (20) : 4257 - 4260
  • [32] One-dimensional Josephson junction arrays: Lifting the Coulomb blockade by depinning
    Vogt, Nicolas
    Schaefer, Roland
    Rotzinger, Hannes
    Cui, Wanyin
    Fiebig, Andreas
    Shnirman, Alexander
    Ustinov, Alexey V.
    PHYSICAL REVIEW B, 2015, 92 (04):
  • [33] FISKE MODES IN ONE-DIMENSIONAL PARALLEL JOSEPHSON-JUNCTION ARRAYS
    VANDERZANT, HSJ
    BERMAN, D
    ORLANDO, TP
    DELIN, KA
    PHYSICAL REVIEW B, 1994, 49 (18): : 12945 - 12952
  • [34] ONE-DIMENSIONAL PARALLEL JOSEPHSON-JUNCTION ARRAYS AS A TOOL FOR DIAGNOSTICS
    VANDERZANT, HSJ
    RECEVEUR, RAM
    ORLANDO, TP
    KLEINSASSER, AW
    APPLIED PHYSICS LETTERS, 1994, 65 (16) : 2102 - 2104
  • [35] Two-point one-dimensional δ-δ′ interactions: non-abelian addition law and decoupling limit
    Gadella, M.
    Mateos-Guilarte, J.
    Munoz-Castaneda, J. M.
    Nieto, L. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (01)
  • [36] The use of two-point Taylor expansions in singular one-dimensional boundary value problems I
    Ferreir, Chelo
    Lopez, Jose L.
    Sinusia, Ester Perez
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) : 708 - 725
  • [37] Scaling analysis of magnetic-field-limed phase transitions in one-dimensional Josephson junction arrays
    Kuo, W
    Chen, CD
    PHYSICAL REVIEW LETTERS, 2001, 87 (18) : 186804 - 1
  • [38] PHASE-TRANSITIONS IN THE ONE-DIMENSIONAL FRUSTRATED QUANTUM XY MODEL AND JOSEPHSON-JUNCTION LADDERS
    GRANATO, E
    JOURNAL OF APPLIED PHYSICS, 1994, 75 (10) : 6960 - 6962
  • [39] One-Dimensional Disordered Bosonic Systems
    D'Errico, Chiara
    Tarallo, Marco G.
    ATOMS, 2021, 9 (04)
  • [40] Entanglement in one-dimensional bosonic chains
    Avila, C. A.
    Mendoza-Arenas, J. J.
    Franco, R.
    Silva-Valencia, J.
    REVISTA MEXICANA DE FISICA, 2012, 58 (02) : 225 - 228