Analysis and application of high order implicit Runge-Kutta schemes to collocated finite volume discretization of the incompressible Navier-Stokes equations

被引:12
|
作者
Kazemi-Kamyab, V. [1 ]
van Zuijlen, A. H. [1 ]
Bijl, H. [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Aerodynam Sect, NL-2600 GB Delft, Netherlands
关键词
Incompressible Navier-Stokes; High order time integration; Implicit Runge-Kutta; Collocated finite volume; Rhie-Chow interpolation; TIME INTEGRATION SCHEMES; TURBULENT-FLOW; MOMENTUM INTERPOLATION; FLUID-FLOW; ALGORITHM; DRIVEN; CAVITY; GRIDS;
D O I
10.1016/j.compfluid.2014.11.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The application of a family of high order implicit Runge-Kutta time integration schemes, namely the explicit first-stage singly diagonally implicit Runge-Kutta schemes (ESDIRK), to cell-centered collocated finite volume discretization of the unsteady incompressible Navier-Stokes is considered. Although achieving computational efficiency relative to commonly used second order implicit schemes has been the motivating factor, this study focuses on temporal order analysis of the high order schemes on the collocated grid. In particular, a face velocity interpolation procedure (Rhie-Chow) which preserves the temporal design order of the ESDIRK schemes is introduced. The details of an iterative pressure-based time advancing algorithm comprising the designed interpolation method are presented (iterated-PISO). The results from solving numerical examples demonstrate the temporal order preservation of the algorithm. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [31] Stability analysis of a Galerkin/Runge-Kutta Navier-Stokes discretisation on unstructured tetrahedral grids
    Giles, MB
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 132 (02) : 201 - 214
  • [32] A general positivity-preserving algorithm for implicit high-order finite volume schemes solving the Euler and Navier-Stokes equations
    Huang, Qian-Min
    Zhou, Hanyu
    Ren, Yu-Xin
    Wang, Qian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 508
  • [33] RELAXATION RUNGE-KUTTA METHODS: FULLY DISCRETE EXPLICIT ENTROPY-STABLE SCHEMES FOR THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS
    Ranocha, Hendrik
    Sayyari, Mohammed
    Dalcin, Lisandro
    Parsani, Matteo
    Ketcheson, David I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A612 - A638
  • [34] Convergence of a colocated finite volume scheme for the incompressible Navier-Stokes equations
    Zimmermann, S.
    [J]. Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 619 - 622
  • [35] A new discretization method and its application to solve incompressible Navier-Stokes equations
    Shu, C
    Fan, LF
    [J]. COMPUTATIONAL MECHANICS, 2001, 27 (04) : 292 - 301
  • [36] A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations
    Ferrer, E.
    Willden, R. H. J.
    [J]. COMPUTERS & FLUIDS, 2011, 46 (01) : 224 - 230
  • [37] Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes
    Kanevsky, Alex
    Carpenter, Mark H.
    Gottlieb, David
    Hesthaven, Jan S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1753 - 1781
  • [38] High order accurate solution of the incompressible Navier-Stokes equations
    Brüger, A
    Gustafsson, B
    Lötstedt, P
    Nilsson, J
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) : 49 - 71
  • [39] A high-order characteristics finite element method for the incompressible Navier-Stokes equations
    Boukir, K
    Maday, Y
    Metivet, B
    Razafindrakoto, E
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 25 (12) : 1421 - 1454
  • [40] An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 1147 - 1170