Sparse Multi-Channel Variational Autoencoder for the Joint Analysis of Heterogeneous Data

被引:0
|
作者
Antelmi, Luigi [1 ]
Ayache, Nicholas [1 ]
Robert, Philippe [2 ,3 ]
Lorenzi, Marco [1 ]
机构
[1] Univ Cote dAzur, INRIA, Epione Project Team, Nice, France
[2] Univ Cote dAzur, CoBTeK, Nice, France
[3] CHU Nice, Ctr Memoire, Nice, France
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
CANONICAL CORRELATION-ANALYSIS; SETS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interpretable modeling of heterogeneous data channels is essential in medical applications, for example when jointly analyzing clinical scores and medical images. Variational Autoencoders (VAE) are powerful generative models that learn representations of complex data. The flexibility of VAE may come at the expense of lack of interpretability in describing the joint relationship between heterogeneous data. To tackle this problem, in this work we extend the variational framework of VAE to bring parsimony and interpretability when jointly account for latent relationships across multiple channels. In the latent space, this is achieved by constraining the variational distribution of each channel to a common target prior. Parsimonious latent representations are enforced by variational dropout. Experiments on synthetic data show that our model correctly identifies the prescribed latent dimensions and data relationships across multiple testing scenarios. When applied to imaging and clinical data, our method allows to identify the joint effect of age and pathology in describing clinical condition in a large scale clinical cohort.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Joint inversion of CMP gathers of multi-channel transient electromagnetic data
    Li, Hai
    Xue, Guo-Qiang
    Zhong, Hua-Sen
    Di, Qing-Yun
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2016, 59 (12): : 4439 - 4447
  • [22] Multi-channel data fusion based on wavelet analysis
    Zhang, Wenju
    Su, Qingzu
    [J]. Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2002, 22 (02):
  • [23] Multi-channel data compression
    Ren, Yongfeng
    Liu, Xiaohua
    Xu, Wenqiang
    Zhang, Wendong
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2008, 23 (09) : 14 - 21
  • [24] Multi-channel data compression
    National Key Laboratory for Electronic Measurement Technology
    不详
    [J]. IEEE Aerosp Electron Syst Mag, 2008, 9 (14-21):
  • [25] MULTI-CHANNEL DATA LOGGER
    BIRKETT, AG
    [J]. ELECTRONICS & WIRELESS WORLD, 1989, 95 (1639): : 471 - 471
  • [26] Mutual Information-based Multi-channel Joint Sparse Model for Histopathological Images Classification
    Tang H.
    Li X.
    Zhang X.
    Zhang D.
    [J]. 2018, Institute of Computing Technology (30): : 1514 - 1521
  • [27] Variational deconvolution of multi-channel images with inequality constraints \
    Welk, Martin
    Nagy, James G.
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS, 2007, 4477 : 386 - +
  • [28] Modeling and analysis of fatigue detection with multi-channel data fusion
    Wenbo Huang
    Changyuan Wang
    Hong-bo Jia
    Pengxiang Xue
    Li Wang
    [J]. The International Journal of Advanced Manufacturing Technology, 2022, 122 : 291 - 301
  • [29] Modeling and analysis of fatigue detection with multi-channel data fusion
    Huang, Wenbo
    Wang, Changyuan
    Jia, Hong-bo
    Xue, Pengxiang
    Wang, Li
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 122 (01): : 291 - 301
  • [30] Retinal Blood Vessel Segmentation by Multi-channel Deep Convolutional Autoencoder
    Ortiz, Andres
    Ramirez, Javier
    Cruz-Arandiga, Ricardo
    Garcia-Tarifa, Maria J.
    Martinez-Murcia, Francisco J.
    Gorriz, Juan M.
    [J]. INTERNATIONAL JOINT CONFERENCE SOCO'18-CISIS'18- ICEUTE'18, 2019, 771 : 37 - 46