Chaos in cross-coupled BVP oscillators

被引:0
|
作者
Ueta, T [1 ]
Kawakami, H [1 ]
机构
[1] Univ Tokushima, Ctr Adv Informat Technol, Tokushima 7708506, Japan
关键词
BVP oscillator; bifurcation; torus doubling; chaos;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate the cross-coupled BVP oscillators. A single BVP oscillator has two terminals which can extract an independent state variable, so in the preceding works, several coupling systems have studied. Synchronization modes and chaos in these systems are classified as results of bifurcation problems.,We revisit one of coupled oscillator, and clarified new results which have not been reported before, i.e., stable tori and its breakdown, and chaotic motions. Also classification of synchronized periodic solutions is done by a bifurcation diagram.
引用
收藏
页码:68 / 71
页数:4
相关论文
共 50 条
  • [31] A Phase Noise Reduction Technique in LC Cross-coupled Oscillators with Adjusting Transistors Operating Regions
    Aghabagheri R.
    Miar-Naimi H.
    Javadi M.
    International Journal of Engineering, Transactions A: Basics, 2020, 33 (04): : 560 - 566
  • [32] Experimental comparison of phase-noise in cross-coupled RC- and LC-oscillators
    Oliveira, Luis Bica
    Allam, Ahmed
    Filanovsky, Igor M.
    Fernandes, Jorge R.
    Verhoeven, Chris J. M.
    Silva, Manuel M.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2010, 38 (07) : 681 - 688
  • [33] Phase noise analysis for differential cross-coupled LC oscillators using the impulse sensitivity function
    Liu, Jinhua
    Chen, Guican
    Zhang, Hong
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2010, 44 (12): : 66 - 70
  • [34] A Phase Noise Reduction Technique in LC Cross-coupled Oscillators with Adjusting Transistors Operating Regions
    Aghabagheri, R.
    Miar-Naimi, H.
    Javadi, M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 560 - 566
  • [35] Controlling chaos in systems of coupled oscillators
    Núñez, M
    Mato, G
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 307 (3-4) : 315 - 330
  • [36] Chaos and localization in coupled quartic oscillators
    Santhanam, MS
    Sheorey, VB
    Lakshminarayan, A
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (02): : 439 - 457
  • [37] SYNCHRONIZATION AND CHAOS IN COUPLED NONLINEAR OSCILLATORS
    WALLER, I
    KAPRAL, R
    PHYSICS LETTERS A, 1984, 105 (4-5) : 163 - 168
  • [38] Chaos control and synchronization in coupled oscillators
    Astakhov, VV
    Silchenko, AN
    Strelkova, GI
    Shabunin, AV
    Anishchenko, VS
    RADIOTEKHNIKA I ELEKTRONIKA, 1996, 41 (11): : 1323 - 1331
  • [39] Chaos and hyperchaos in coupled Kerr oscillators
    Grygiel, K
    Szlachetka, P
    OPTICS COMMUNICATIONS, 2000, 177 (1-6) : 425 - 431
  • [40] CHAOS IN COUPLED NONLINEAR GASTRIC OSCILLATORS
    HANSON, P
    BARDAKJIAN, BL
    DIAMANT, NE
    MATHEMATICAL AND COMPUTER MODELLING, 1990, 14 : 586 - 591