Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression

被引:102
|
作者
Li, Sai [1 ,2 ]
Fang, Huajing [2 ]
Shi, Bing [2 ]
机构
[1] Wuhan Inst Technol, Sch Elect & Informat Engn, Wuhan 430205, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life; Interacting multiple model; Particle filter; Support vector regression; PROGNOSTICS; STATE; PREDICTION; OPTIMIZATION; ALGORITHM; SYSTEMS;
D O I
10.1016/j.ress.2021.107542
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-ion batteries have become an integral part of our lives, and it is important to find a reliable and accurate long-term prognostic scheme to supervise the performance degradation and predict the remaining useful life of batteries. In the perspective of information fusion methodology, an interacting multiple model framework with particle filter and support vector regression is developed to realize multi-step-ahead estimation of the capacity and remaining useful life of batteries. During the multi-step-ahead prediction period, the support vector regression model with sliding windows is used to compensate the future measurements online. Thus, the interacting multiple model with particle filter can relocate the particles and update the capacity estimation. The probability distribution of the remaining useful life is also obtained. Finally, the proposed method is compared and validated with particle filter model using the benchmark data. The experimental results prove that the proposed model yields stable forecasting performance and narrows the uncertainty in remaining useful life estimation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
    Dong, Hancheng
    Jin, Xiaoning
    Lou, Yangbing
    Wang, Changhong
    [J]. JOURNAL OF POWER SOURCES, 2014, 271 : 114 - 123
  • [2] Remaining useful life prediction of lithium-ion battery based on auto-regression and particle filter
    Lin, Jie
    Wei, Minghua
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2021, 14 (02) : 218 - 237
  • [3] Remaining Useful Life Estimation of Lithium-ion Battery Using Exemplar-Based Conditional Particle Filter
    Liu, Zhenbao
    Sun, Gaoyuan
    Bu, Shuhui
    Zhang, Chao
    [J]. 2015 IEEE CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (PHM), 2015,
  • [4] Remaining useful life prediction of lithium-ion battery based on an improved particle filter algorithm
    Xie, Guo
    Peng, Xi
    Li, Xin
    Hei, Xinhong
    Hu, Shaolin
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (06): : 1365 - 1376
  • [5] Prediction of Remaining Useful Life of Lithium-ion Battery Based on Improved Auxiliary Particle Filter
    Li, Huan
    Liu, Zhitao
    Su, Hongye
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1267 - 1272
  • [6] Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter
    Duan, Bin
    Zhang, Qi
    Geng, Fei
    Zhang, Chenghui
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (03) : 1724 - 1734
  • [7] Prediction of remaining useful life for lithium-ion battery based on particle filter with residual resampling
    Pan, Chaofeng
    Huang, Aibao
    He, Zhigang
    Lin, Chunjing
    Sun, Yanyan
    Zhao, Shichao
    Wang, Limei
    [J]. ENERGY SCIENCE & ENGINEERING, 2021, 9 (08): : 1115 - 1133
  • [8] Lithium-ion Battery Remaining Useful Life Prediction Based on Exponential Smoothing and Particle Filter
    Pan, Chaofeng
    Chen, Yao
    Wang, Limei
    He, Zhigang
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (10): : 9537 - 9551
  • [9] Lithium-ion battery remaining useful life prediction based on grey support vector machines
    Li, Xiaogang
    Miao, Jieqiong
    Ye, Jianhua
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (12)
  • [10] Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression
    Wei, Jingwen
    Dong, Guangzhong
    Chen, Zonghai
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (07) : 5634 - 5643