Chaotic properties of the elliptical stadium billiard

被引:0
|
作者
Lopac, V [1 ]
Movre, I
Mrkonjic, I
Radic, D
机构
[1] Univ Zagreb, Fac Chem Engn & Technol, Dept Phys, Zagreb 41000, Croatia
[2] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-parameter family of elliptical stadium billiards is discussed. Special attention is paid to the one-parameter subfamily inscribed into the square which interpolates between the circle and the square. It is shown that the classical dynamics of such system is mixed for all values of the shape parameter. For the same system the quantal spectra and wave functions are calculated, and the classical and quantal chaotic fraction values are compared. Other types of elliptical stadium billiards are briefly discussed.
引用
收藏
页码:371 / 375
页数:5
相关论文
共 50 条
  • [41] LASER GENERATION OF ELLIPTICAL BILLIARD BALLS
    HARTMANN, SR
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1983, 185 (MAR): : 155 - PHYS
  • [42] AN EXACT MAP FOR A CHAOTIC BILLIARD
    Mikoss, I.
    Garcia, P.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (05): : 673 - 681
  • [43] ROLE OF THE EDGE ORBITS IN THE SEMICLASSICAL QUANTIZATION OF THE STADIUM BILLIARD
    ALONSO, D
    GASPARD, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (05): : 1599 - 1607
  • [44] Chaotic billiard dynamics for herding
    Suzuki, Hideyuki
    [J]. IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2015, 6 (04): : 466 - 474
  • [45] Quantitative study of scars in the boundary section of the stadium billiard
    Simonotti, FP
    Vergini, E
    Saraceno, M
    [J]. PHYSICAL REVIEW E, 1997, 56 (04): : 3859 - 3867
  • [46] A lower bound for chaos on the elliptical stadium
    Canale, E
    Markarian, R
    Kamphorst, SO
    de Carvalho, SP
    [J]. PHYSICA D, 1998, 115 (3-4): : 189 - 202
  • [47] The non-integrability of a rotating elliptical billiard
    Kozlova, TV
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1998, 62 (01): : 81 - 85
  • [48] Suppressing Fermi Acceleration in a Driven Elliptical Billiard
    Leonel, Edson D.
    Bunimovich, Leonid A.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (22)
  • [49] Semiclassical transition from an elliptical to an oval billiard
    Sieber, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13): : 4563 - 4596
  • [50] TOPOLOGY OF THE ELLIPTICAL BILLIARD WITH THE HOOKE'S POTENTIAL
    Radnovic, Milena
    [J]. THEORETICAL AND APPLIED MECHANICS, 2015, 42 (01) : 1 - 9