The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles The algebra of 2D Gabor quaternionic offset LCT and uncertainty principles

被引:20
|
作者
Bhat, M. Younus [1 ]
Dar, Aamir H. [1 ]
机构
[1] Islamic Univ Sci & Technol Awantipora, Dept Math Sci, Pulwama 192122, Jammu & Kashmir, India
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 02期
关键词
Quaternion algebra; Gabor transform; Quaternion offset linear canonical transform; Gabor quaternion offset linear canonical transform; Lieb's inequality; Uncertainty principles;
D O I
10.1007/s41478-021-00364-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gabor quaternionic offset linear canonical transform (GQOLCT) is defined as a generalization of the quaternionic offset linear canonical transform (QOLCT). In this paper, we investigate the 2D GQOLCT. A new definition of the GQOLCT is provided along with its several important properties, such as boundedness, orthogonality relation, Plancherel and inversion formulas, are derived based on the spectral representation of the GQOLCT. Further, we establish a version of Lieb's and logarithmic inequalities. Finally we will prove a type of the Heisenberg inequality by using local uncertainty principle.
引用
收藏
页码:637 / 649
页数:13
相关论文
共 50 条
  • [21] Novel uncertainty principles associated with 2D quaternion Fourier transforms
    Yang, Yan
    Kou, Kit Ian
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (03) : 213 - 226
  • [22] 2D Non-separable Linear Canonical Transform (2D-NS-LCT) based cryptography
    Zhao, Liang
    Muniraj, Inbarasan
    Healy, John J.
    Malallah, Ra'ed
    Cui, Xiao-Guang
    Ryle, James P.
    Sheridan, John T.
    HOLOGRAPHY: ADVANCES AND MODERN TRENDS V, 2017, 10233
  • [23] Sampling formulas for 2D quaternionic signals associated with various quaternion Fourier and linear canonical transforms
    Hu, Xiaoxiao
    Cheng, Dong
    Kou, Kit Ian
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (03) : 463 - 478
  • [24] Gabor-2DLDA: Face Recognition using Gabor Features and 2D Linear Discriminant Analysis
    Wang, Xiao-ming
    Huang, Chang
    Liu, Jin-gao
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 608 - 610
  • [25] Generalized 2D Laguerre polynomials and their quaternionic extensions
    Saad, Nasser
    Thirulogasanthar, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 308 : 301 - 317
  • [26] Heisenberg's uncertainty principles for the 2-D nonseparable linear canonical transforms
    Ding, Jian-Jiun
    Pei, Soo-Chang
    SIGNAL PROCESSING, 2013, 93 (05) : 1027 - 1043
  • [27] Image representation using 2D Gabor wavelets
    Carnegie Mellon Univ, Pittsburgh, United States
    IEEE Trans Pattern Anal Mach Intell, 10 (959-971):
  • [28] Image representation using 2D gabor wavelets
    Lee, TS
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (10) : 959 - 971
  • [29] Optimizing 2D Gabor Filters for Iris Recognition
    Radu, P.
    Sirlantzis, K.
    Howells, W. G. J.
    Hoque, S.
    Deravi, F.
    2013 FOURTH INTERNATIONAL CONFERENCE ON EMERGING SECURITY TECHNOLOGIES (EST), 2013, : 47 - 50
  • [30] Donoho-Stark?s and Hardy?s uncertainty principles for the short-time quaternion offset linear canonical transform
    Dar, Aamir H.
    Bhat, M. Younus
    FILOMAT, 2023, 37 (14) : 4467 - 4480