Surface Chemistry Impact on the Light Absorption by Colloidal Quantum Dots

被引:10
|
作者
Giansante, Carlo [1 ]
机构
[1] Carlo Giansante CNR NANOTEC, Ist Nanotecnol, Via Monteroni, I-73100 Lecce, Italy
关键词
Colloidal Nanocrystals; Ligands; Light Absorption; Quantum Dots; Surface Chemistry; OPTICAL-PROPERTIES; LIGAND-EXCHANGE; PEROVSKITE NANOCRYSTALS; EXTINCTION COEFFICIENT; DIELECTRIC CONFINEMENT; EXCITON CONFINEMENT; CROSS-SECTION; SOLAR-CELLS; CDSE; SIZE;
D O I
10.1002/chem.202102168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
At the size scale at which quantum confinement effects arise in inorganic semiconductors, the materials' surface-to-volume ratio is intrinsically high. This consideration sets surface chemistry as a powerful tool to exert further control on the electronic structure of the inorganic semiconductors. Among the materials that experience the quantum confinement regime, those prepared via colloidal synthetic procedures (the colloidal quantum dots - and wires and wells, too -) are prone to undergo surface reactions in the solution phase and thus represent an ideal framework to study the ensemble impact of surface chemistry on the materials' electronic structure. It is here discussed such an impact at the ground state by using the absorption spectrum of the colloidal quantum dots as a descriptor. The experiments show that the chemical species (the ligands) at the colloidal quantum dot surface induce changes to the optical band gap, the absorption coefficient at all wavelengths, and the ionization potential. These evidences point to a description of the colloidal quantum dot (the ligand/core adduct) as an indecomposable species, in which the orbitals localized on the ligands and the core mix in each other's electric field. This description goes beyond conventional models that conceive the ligands on the basis of pure electrostatic arguments (i. e., either as a dielectric shell or as electric dipoles) or as a mere potential energy barrier at the core boundaries.
引用
收藏
页码:14359 / 14369
页数:11
相关论文
共 50 条
  • [31] The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots
    De Geyter, Bram
    Hens, Zeger
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (16)
  • [32] Nanoscale patterning of colloidal quantum dots for surface plasmon generation
    Park, Yeonsang
    Roh, Young-Geun
    Kim, Un Jeong
    Chung, Dae-Young
    Suh, Hwansoo
    Kim, Jineun
    Cheon, Sangmo
    Lee, Jaesoong
    Kim, Tae-Ho
    Cho, Kyung-Sang
    Lee, Chang-Won
    [J]. ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS VI, 2013, 8613
  • [33] Surface Engineered Colloidal Quantum Dots for Complete Green Process
    Hahm, Donghyo
    Park, Jisoo
    Jeong, Inho
    Rhee, Seunghyun
    Lee, Taesoo
    Lee, Changhee
    Chung, Seunjun
    Bae, Wan Ki
    Lee, Seonwoo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (09) : 10563 - 10570
  • [34] Light absorption and photoluminescence in quantum dots and artificial molecules
    Firsov, DA
    Vorobjev, LE
    Panevin, VY
    Fedosov, NK
    Shalygin, VA
    Samsonenko, YB
    Tonkikh, AA
    Girlin, GE
    Andreev, A
    Kryzhanovskaya, NV
    Tarasov, IS
    Pikhtin, NA
    Ustinov, VM
    Hanna, S
    Seilmeier, A
    Julien, FH
    Zakharov, ND
    Werner, P
    [J]. ACTA PHYSICA POLONICA A, 2005, 107 (01) : 158 - 162
  • [35] Photoinduced light absorption in Ge/Si quantum dots
    Ustimenko, R. V.
    Karaulov, D. A.
    Vinnichenko, M. Ya.
    Makhov, I. S.
    Firsov, D. A.
    Sarkisyan, H. A.
    Sargsian, T. A.
    Hayrapetyan, D. B.
    [J]. ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2024, 17 (01): : 105 - 112
  • [36] Energy spectrum and light absorption of arsenene quantum dots
    Cheng, Wanqing
    Zheng, Jianlong
    Zhai, Feng
    [J]. MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [37] Light absorption in silicon quantum dots embedded in silica
    Mirabella, S.
    Agosta, R.
    Franzo, G.
    Crupi, I.
    Miritello, M.
    Lo Savio, R.
    Di Stefano, M. A.
    Di Marco, S.
    Simone, F.
    Terrasi, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)
  • [38] Surface and Interface Chemistry in Colloidal Quantum Dots for Solar Applications Studied by X-Ray Photoelectron Spectroscopy
    Clark, Pip C. J.
    Flavell, Wendy R.
    [J]. CHEMICAL RECORD, 2019, 19 (07): : 1233 - 1243
  • [39] Colloidal Quantum Dots: 4. Colloidal Quantum Dots and Basic Photoluminescence Laws
    Razumov, V. F.
    Tovstun, S. A.
    [J]. HIGH ENERGY CHEMISTRY, 2024, 58 (SUPPL 1) : S39 - S53
  • [40] Colloidal Quantum Dots: 1. Colloidal Quantum Dots, a New Class of Luminophores
    Razumov, V. F.
    [J]. HIGH ENERGY CHEMISTRY, 2024, 58 (SUPPL 1) : S4 - S9