Revealing molecular pathways for cancer cell fitness through a genetic screen of the cancer translatome

被引:10
|
作者
Kuzuoglu-Ozturk, Duygu [1 ,2 ]
Hu, Zhiqiang [3 ]
Rama, Martina [1 ,2 ]
Devericks, Emily [1 ,2 ]
Weiss, Jacob [1 ,2 ]
Chiang, Gary G. [4 ]
Worland, Stephen T. [4 ]
Brenner, Steven E. [3 ]
Goodarzi, Hani [1 ,2 ,5 ]
Gilbert, Luke A. [1 ,2 ]
Ruggero, Davide [1 ,2 ,6 ]
机构
[1] Univ Calif San Francisco, Dept Urol, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94158 USA
[3] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[4] eFFECTOR Therapeut, San Diego, CA 92121 USA
[5] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[6] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
来源
CELL REPORTS | 2021年 / 35卷 / 13期
关键词
STRESS-RESPONSE; HIGH EXPRESSION; INITIATION; MITOCHONDRIA; REPRESSION; AUTOPHAGY; ACTIVATE; BINDING; UPRMT;
D O I
10.1016/j.celrep.2021.109321
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The major cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), an ancient protein required for translation of all eukaryotic genomes, is a surprising yet potent oncogenic driver. The genetic interactions that maintain the oncogenic activity of this key translation factor remain unknown. In this study, we carry out a genome-wide CRISPRi screen wherein we identify more than 600 genetic interactions that sustain eIF4E oncogenic activity. Our data show that eIF4E controls the translation of Tfeb, a key executer of the autophagy response. This autophagy survival response is triggered by mitochondrial proteotoxic stress, which allows cancer cell survival. Our screen also reveals a functional interaction between eIF4E and a single anti-apoptotic factor, Bcl-xL, in tumor growth. Furthermore, we show that eIF4E and the exon-junction complex (EJC), which is involved in many steps of RNA metabolism, interact to control the migratory properties of cancer cells. Overall, we uncover several cancer-specific vulnerabilities that provide further resolution of the cancer translatome.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Molecular targeting of obesity pathways in cancer
    Surmacz, Eva
    Otvos, Laszlo
    HORMONE MOLECULAR BIOLOGY AND CLINICAL INVESTIGATION, 2015, 22 (02) : 53 - 62
  • [32] Molecular Pathways: Protein Methyltransferases in Cancer
    Copeland, Robert A.
    CLINICAL CANCER RESEARCH, 2013, 19 (23) : 6344 - 6350
  • [33] Molecular Pathways: MERTK Signaling in Cancer
    Cummings, Christopher T.
    DeRyckere, Deborah
    Earp, H. Shelton
    Graham, Douglas K.
    CLINICAL CANCER RESEARCH, 2013, 19 (19) : 5275 - 5280
  • [34] Molecular pathways linking inflammation and cancer
    Mantovani, Alberto
    CYTOKINE, 2008, 43 (03) : 276 - 276
  • [35] Molecular pathways in colorectal cancer development
    Jass, JR
    Whitehall, VLJ
    Young, J
    Leggett, BA
    EXOGENOUS FACTORS IN COLONIC CARCINOGENESIS, 2003, 128 : 31 - 43
  • [36] Molecular pathways in periampullary cancer: An overview
    Apurva
    Sattar, Real Sumayya Abdul
    Ali, Asgar
    Nimisha
    Sharma, Abhay Kumar
    Kumar, Arun
    Santoshi, Seneha
    Saluja, Sundeep Singh
    CELLULAR SIGNALLING, 2022, 100
  • [37] Molecular Pathways: MicroRNAs as Cancer Therapeutics
    Melo, Sonia A.
    Kalluri, Raghu
    CLINICAL CANCER RESEARCH, 2012, 18 (16) : 4234 - 4239
  • [38] Molecular pathways leading to cancer cachexia
    Tisdale, MJ
    PHYSIOLOGY, 2005, 20 : 340 - 348
  • [39] Molecular pathways and targets in prostate cancer
    Shtivelman, Emma
    Beer, Tomasz M.
    Evans, Christopher P.
    ONCOTARGET, 2014, 5 (17) : 7217 - 7259
  • [40] Molecular Pathways Linking Inflammation and Cancer
    Mantovani, A.
    CURRENT MOLECULAR MEDICINE, 2010, 10 (04) : 369 - 373