Revealing molecular pathways for cancer cell fitness through a genetic screen of the cancer translatome

被引:10
|
作者
Kuzuoglu-Ozturk, Duygu [1 ,2 ]
Hu, Zhiqiang [3 ]
Rama, Martina [1 ,2 ]
Devericks, Emily [1 ,2 ]
Weiss, Jacob [1 ,2 ]
Chiang, Gary G. [4 ]
Worland, Stephen T. [4 ]
Brenner, Steven E. [3 ]
Goodarzi, Hani [1 ,2 ,5 ]
Gilbert, Luke A. [1 ,2 ]
Ruggero, Davide [1 ,2 ,6 ]
机构
[1] Univ Calif San Francisco, Dept Urol, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94158 USA
[3] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[4] eFFECTOR Therapeut, San Diego, CA 92121 USA
[5] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[6] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
来源
CELL REPORTS | 2021年 / 35卷 / 13期
关键词
STRESS-RESPONSE; HIGH EXPRESSION; INITIATION; MITOCHONDRIA; REPRESSION; AUTOPHAGY; ACTIVATE; BINDING; UPRMT;
D O I
10.1016/j.celrep.2021.109321
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The major cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), an ancient protein required for translation of all eukaryotic genomes, is a surprising yet potent oncogenic driver. The genetic interactions that maintain the oncogenic activity of this key translation factor remain unknown. In this study, we carry out a genome-wide CRISPRi screen wherein we identify more than 600 genetic interactions that sustain eIF4E oncogenic activity. Our data show that eIF4E controls the translation of Tfeb, a key executer of the autophagy response. This autophagy survival response is triggered by mitochondrial proteotoxic stress, which allows cancer cell survival. Our screen also reveals a functional interaction between eIF4E and a single anti-apoptotic factor, Bcl-xL, in tumor growth. Furthermore, we show that eIF4E and the exon-junction complex (EJC), which is involved in many steps of RNA metabolism, interact to control the migratory properties of cancer cells. Overall, we uncover several cancer-specific vulnerabilities that provide further resolution of the cancer translatome.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Molecular and genetic pathways in penile cancer
    Kayes, Oliver
    Ahmed, Hashim U.
    Arya, Manit
    Minhas, Suks
    LANCET ONCOLOGY, 2007, 8 (05): : 420 - 429
  • [2] ATM deficiency: Revealing the pathways to cancer
    Tubbs, Anthony T.
    Sleckman, Barry P.
    CELL CYCLE, 2014, 13 (19) : 2992 - 2992
  • [3] Natural gypenosides: targeting cancer through different molecular pathways
    Ahmad, Bashir
    Khan, Suliman
    Nabi, Ghulam
    Gamallat, Yaser
    Su, Pengyu
    Jamalat, Yazeed
    Duan, Pengfei
    Yao, Lunguang
    CANCER MANAGEMENT AND RESEARCH, 2019, 11 : 2287 - 2297
  • [4] Genetic pathways to colorectal cancer
    Lea, Isabel A.
    Jackson, Marcus A.
    Dunnick, June K.
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2009, 670 (1-2) : 96 - 98
  • [5] Genetic pathways to colorectal cancer
    Boland, CR
    HOSPITAL PRACTICE, 1997, 32 (11): : 79 - &
  • [6] Genetic pathways in colorectal cancer
    Ilyas, M
    Tomlinson, IPM
    HISTOPATHOLOGY, 1996, 28 (05) : 389 - 399
  • [7] A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines
    Gonen, Mehmet
    Weir, Barbara A.
    Cowley, Glenn S.
    Vazquez, Francisca
    Guan, Yuanfang
    Jaiswal, Alok
    Karasuyama, Masayuki
    Uzunangelov, Vladislav
    Wang, Tao
    Tsherniak, Aviad
    Howell, Sara
    Marbach, Daniel
    Hoff, Bruce
    Norman, Thea C.
    Airola, Antti
    Bivol, Adrian
    Bunte, Kerstin
    Carlin, Daniel
    Chopra, Sahil
    Deran, Alden
    Ellrott, Kyle
    Gopalacharyulu, Peddinti
    Graim, Kiley
    Kaski, Samuel
    Khan, Suleiman A.
    Newton, Yulia
    Ng, Sam
    Pahikkala, Tapio
    Paull, Evan
    Sokolov, Artem
    Tang, Hao
    Tang, Jing
    Wennerberg, Krister
    Xie, Yang
    Zhan, Xiaowei
    Zhu, Fan
    Aittokallio, Tero
    Mamitsuka, Hiroshi
    Stuart, Joshua M.
    Boehm, Jesse S.
    Root, David E.
    Xiao, Guanghua
    Stolovitzky, Gustavo
    Hahn, William C.
    Margolin, Adam A.
    CELL SYSTEMS, 2017, 5 (05) : 485 - +
  • [8] Cancer Cell Fitness Is Dynamic
    Lenz, Luana S.
    Faccioni, Juliano L.
    Bracco, Paula A.
    Santos, Jephesson A. F.
    Pereira, Luiza C.
    Buss, Julieti H.
    Tamborindeguy, Mauricio T.
    Torgo, Daphne
    Monteiro, Thayana
    Mantovani, Giovana B.
    Santo, Carolina N.
    Marcolin, Julia C.
    Dalsin, Eloisa
    Vigo, Alvaro
    Callegari-Jacques, Sidia M.
    Silva, Andrew O.
    Onzi, Giovana R.
    Begnini, Karine R.
    Lenz, Guido
    CANCER RESEARCH, 2021, 81 (04) : 1040 - 1051
  • [9] Cell death pathways: molecular mechanisms and therapeutic targets for cancer
    Wang, Shaohui
    Guo, Sa
    Guo, Jing
    Du, Qinyun
    Wu, Cen
    Wu, Yeke
    Zhang, Yi
    MEDCOMM, 2024, 5 (09):
  • [10] Molecular radiosensitization of prostate cancer by modulating cell death pathways
    Xu, Liang
    Dai, Yao
    Meng, Yang
    Tang, Wenhua
    Ji, Qing
    Zhang, Min
    Hao, Xinbao
    Pienta, Kenneth
    Lawrence, Theodore
    MOLECULAR CANCER THERAPEUTICS, 2007, 6 (12) : 3373S - 3374S