A Berry-Esseen bound for student's statistic in the non-iid case

被引:36
|
作者
Bentkus, V [1 ]
Bloznelis, M [1 ]
Gotze, F [1 ]
机构
[1] VILNIUS STATE UNIV, DEPT MATH, LT-2006 VILNIUS, LITHUANIA
关键词
Student's statistic; Berry-Esseen bound; non-identically distributed random variables; convergence rate; Central Limit Theorem; self-normalized sums;
D O I
10.1007/BF02214086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish a Berry-Esseen bound for Student's statistic for independent (nonidentically) distributed random variables. In particular, the bound implies a sharp estimate similar to the classical Berry-Esseen bound. In the i.i.d. case it yields sufficient conditions for the Central Limit Theorem for studentized sums. For non-i.i.d. random variables the bound shows that the Lindeberg condition is sufficient for the Central Limit Theorem for studentized sums.
引用
收藏
页码:765 / 796
页数:32
相关论文
共 50 条
  • [21] Berry-Esseen bound for the Brownian motions on hyperbolic spaces
    Shiozawa, Yuichi
    [J]. STUDIA MATHEMATICA, 2024,
  • [22] A Berry-Esseen bound for vector-valued martingales
    Kojevnikov, Denis
    Song, Kyungchul
    [J]. STATISTICS & PROBABILITY LETTERS, 2022, 186
  • [23] The Berry-Esseen bound for studentized U-statistics
    林正炎
    [J]. ScienceinChina,Ser.A., 2000, Ser.A.2000 (11) - 1163
  • [24] A Berry-Esseen Bound in the Smoluchowski-Kramers Approximation
    Nguyen Van Tan
    Nguyen Tien Dung
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (04) : 871 - 884
  • [25] THE BERRY-ESSEEN BOUND FOR THE POISSON SHOT-NOISE
    LANE, JA
    [J]. ADVANCES IN APPLIED PROBABILITY, 1987, 19 (02) : 512 - 514
  • [26] The Berry-Esseen bound for studentized U-statistics
    Lin, ZY
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2000, 43 (11): : 1154 - 1163
  • [27] The Berry-Esseen bound for studentized U-statistics
    林正炎
    [J]. Science China Mathematics, 2000, (11) : 1154 - 1163
  • [28] A Berry-Esseen bound of order 1/√n for martingales
    Wu, Songqi
    Ma, Xiaohui
    Sang, Hailin
    Fan, Xiequan
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (06) : 701 - 712
  • [29] The Berry-Esseen bound of sample quantiles for NA sequence
    Liu, Tingting
    Zhang, Zhimian
    Hu, Shuhe
    Yang, Wenzhi
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [30] On the Berry-Esseen bound of frequency polygons for φ-mixing samples
    Huang, Gan-ji
    Xing, Guodong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,