The K-shell radiated energy (yield) from neon Z-pinch implosions with annular, gas-puff nozzle radii of 1, 1.75, and 2.5 cm was measured for implosion times from 50 to 300 ns while systematically keeping the implosion kinetic energy nearly constant. The implosions were driven by the Hawk inductive-storage generator at the 0.65-MA level. Initial neutral-neon density distributions from the nozzles were determined with laser interferometry. Measured yields are compared with predictions from zero-dimensional (0-D) scaling models of ideal, one-dimensional (1-D) pinch behavior to both benchmark the scaling models, and to determine their utility for predicting K-shell yields for argon implosions of 200 to >300 ns driven by corresponding currents of 4 to 9 MA, such as envisioned for the DECADE QUAD. For all three nozzles, the 0-D models correctly predict the Z-pinch mass for maximum yield. For the 1- and 1.75-cm radius nozzles, the scaling models accurately match the measured yields if the ratio of initial to final radius (compression ratio) is assumed to be 8:1, For the 2.5-cm radius nozzle, the measured yields are only one-third of the predictions. Analysis of K-shell spectral measurements suggest that as much as 70% (50%) of the imploded mass is radiating in the K-shell for the 1-cm (1.75-cm) radius nozzle, That fraction is only 10% for the 2.5-cm radius nozzle, The 0-D scaling models are useful for predicting 1-D-like K-shell radiation yields (better than a factor-of-two accuracy) when a nominal (approximate to 10:1) compression ratio is assumed. However, the compression ratio assumed in the models is only an "effective" quantity, so that further interpretations based on the 0-D analysis require additional justification. The lower-than-predicted yield for the 2.5-cm radius nozzle is associated with larger radius and not with longer implosion time, and is probably a result of two-dimensional effects.