Non-existence of nonnegative separate variable solutions to a porous medium equation with spatially dependent nonlinear source

被引:4
|
作者
Iagar, Razvan Gabriel [1 ]
Laurencot, Philippe [2 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia Ingn Mat & Tecnol El, Mostoles 28933, Madrid, Spain
[2] Univ Paul Sabatier, Inst Math Toulouse, CNRS UMR 5219, F-31062 Toulouse 9, France
来源
关键词
Porous medium equation; Weighted source; Backward self -similar solutions; Pohozaev identity; BLOW-UP;
D O I
10.1016/j.bulsci.2022.103167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-existence of nonnegative finite energy solutions to V 1/m(x) -& UDelta;V (x) - |x|& USigma;V(x) + m- 1 = 0, x & ISIN; RN, with m > 1, & USigma; > 0, and N > 1, is proven for & USigma; sufficiently large. More precisely, in dimension N > 4, the optimal lower bound on & USigma; for non-existence is identified, namely & USigma; > & USigma;c := 2(m- 1)(N- 1) , 3m + 1 while, in dimensions N & ISIN; {1, 2, 3}, the lower bound derived on & USigma; improves previous ones already established in the literature. A by-product of this result is the non-existence of nonnegative compactly supported separate variable solutions to a porous medium equation with spatially dependent superlinear source.(C) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Existence and non-existence of solutions for Timoshenko-type equations with variable exponents
    Antontsev, Stanislav N.
    Ferreira, Jorge
    Pişkin, Erhan
    Cordeiro, Sebastião Martins Siqueira
    Ferreira, Jorge (ferreirajorge2012@gmail.com), 1600, Elsevier Ltd (61):
  • [22] Large time behavior of solutions for the porous medium equation with a nonlinear gradient source
    Nan Li
    Pan Zheng
    Chunlai Mu
    Iftikhar Ahmed
    Boundary Value Problems, 2014
  • [23] A remark on the porous medium equation with nonlinear source
    Tersenov, Alkis S.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 873 - 875
  • [24] Large time behavior of solutions for the porous medium equation with a nonlinear gradient source
    Li, Nan
    Zheng, Pan
    Mu, Chunlai
    Ahmed, Iftikhar
    BOUNDARY VALUE PROBLEMS, 2014,
  • [25] Non-existence of meromorphic solutions of a Fermat type functional equation
    Yang, Liang-Zhong
    Zhang, Ji-Long
    AEQUATIONES MATHEMATICAE, 2008, 76 (1-2) : 140 - 150
  • [26] GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO THE DOUBLE NONLINEAR POROUS MEDIUM EQUATION
    Sabitbek, Bolys
    Torebek, Berikbol T.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (03) : 743 - 767
  • [27] On the existence and nonexistence of global solutions for the porous medium equation with strongly nonlinear sources in a cone
    Lian, Songzhe
    Liu, Changchun
    ARCHIV DER MATHEMATIK, 2010, 94 (03) : 245 - 253
  • [28] The porous medium equation with a concentrated nonlinear source
    Wang, Shuhe
    Yin, Jingxue
    Ke, Yuanyuan
    APPLICABLE ANALYSIS, 2012, 91 (01) : 141 - 156
  • [29] Non-existence of Positive Integer Solutions of the Diophantine Equation px
    Tadee, Suton
    Siraworakun, Apirat
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02): : 724 - 735
  • [30] On the existence and nonexistence of global solutions for the porous medium equation with strongly nonlinear sources in a cone
    Songzhe Lian
    Changchun Liu
    Archiv der Mathematik, 2010, 94 : 245 - 253