Non-existence of nonnegative separate variable solutions to a porous medium equation with spatially dependent nonlinear source

被引:4
|
作者
Iagar, Razvan Gabriel [1 ]
Laurencot, Philippe [2 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia Ingn Mat & Tecnol El, Mostoles 28933, Madrid, Spain
[2] Univ Paul Sabatier, Inst Math Toulouse, CNRS UMR 5219, F-31062 Toulouse 9, France
来源
关键词
Porous medium equation; Weighted source; Backward self -similar solutions; Pohozaev identity; BLOW-UP;
D O I
10.1016/j.bulsci.2022.103167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-existence of nonnegative finite energy solutions to V 1/m(x) -& UDelta;V (x) - |x|& USigma;V(x) + m- 1 = 0, x & ISIN; RN, with m > 1, & USigma; > 0, and N > 1, is proven for & USigma; sufficiently large. More precisely, in dimension N > 4, the optimal lower bound on & USigma; for non-existence is identified, namely & USigma; > & USigma;c := 2(m- 1)(N- 1) , 3m + 1 while, in dimensions N & ISIN; {1, 2, 3}, the lower bound derived on & USigma; improves previous ones already established in the literature. A by-product of this result is the non-existence of nonnegative compactly supported separate variable solutions to a porous medium equation with spatially dependent superlinear source.(C) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条