Bayesian approach for inverse interior scattering problems with limited aperture

被引:4
|
作者
Huang, Jiangfeng [1 ]
Deng, Zhiliang [1 ]
Xu, Liwei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
关键词
Inverse interior scattering problems; Bayesian approach; limited aperture; preconditioned Crank-Nicolson (pCN); GIBBS SAMPLER; MCMC;
D O I
10.1080/00036811.2020.1781828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a cavity reconstruction problem for the interior acoustic scattering from limited-aperture measurements. To recover the shape of the cavity, the Bayesian inference technique is applied with the information of posterior distribution of the unknown object being explored in terms of the measured data. The posterior distribution provides us with sufficient knowledge about the unknowns, and therefore it can be used to give the corresponding estimation. We discuss the well-posedness of the posterior distribution in the sense of the Hellinger metric and use the preconditioned Crank-Nicolson (pCN) sampling technique to generate the posterior samples. Numerical examples show the effectiveness of the proposed algorithm.
引用
收藏
页码:1491 / 1504
页数:14
相关论文
共 50 条
  • [21] LARGE WAVE NUMBER APERTURE-LIMITED FOURIER INVERSION AND INVERSE SCATTERING
    BLEISTEIN, N
    [J]. WAVE MOTION, 1989, 11 (02) : 113 - 136
  • [22] Bayesian approach to the inverse problem in a light scattering application
    Otero, Fernando A.
    Barreto Orlande, Helcio R.
    Frontini, Gloria L.
    Elicabe, Guillermo E.
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (05) : 994 - 1016
  • [23] Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective
    Bilionis, I.
    Zabaras, N.
    [J]. INVERSE PROBLEMS, 2014, 30 (01)
  • [24] Convergence rate for the Bayesian approach to linear inverse problems
    Hofinger, Andreas
    Pikkarainen, Hanna K.
    [J]. INVERSE PROBLEMS, 2007, 23 (06) : 2469 - 2484
  • [25] A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems
    Marzouk, Youssef
    Xiu, Dongbin
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (04) : 826 - 847
  • [26] The three-dimensional inverse-scattering and inverse-source problems with a planar aperture
    Norton, Stephen J.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2015, 137 (06): : EL443 - EL448
  • [27] Numerical solution of the limited aperture problem in three-dimensional inverse acoustic scattering
    You, Yun-Xiang
    Miao, Guo-Ping
    Liu, Ying-Zhong
    [J]. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2001, 35 (10): : 1444 - 1449
  • [28] THE INTERIOR INVERSE SCATTERING PROBLEM FOR A TWO-LAYERED CAVITY USING THE BAYESIAN METHOD
    Yin, Yunwen
    Yin, Weishi
    Meng, Pinchao
    Liu, Hongyu
    [J]. INVERSE PROBLEMS AND IMAGING, 2022, 16 (04) : 673 - 690
  • [29] Inverse scattering problems where the potential is not absolutely continuous on the known interior subinterval
    Guo, Yongxia
    Wei, Guangsheng
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [30] Analysis of subspace migrations in limited-view inverse scattering problems
    Kwon, Young Mi
    Park, Won-Kwang
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (12) : 1107 - 1113