Inference with Many Weak Instruments

被引:9
|
作者
Mikusheva, Anna [1 ]
Sun, Liyang [2 ,3 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Berkeley, CA USA
[3] CEMFI, Madrid, Spain
来源
REVIEW OF ECONOMIC STUDIES | 2022年 / 89卷 / 05期
基金
美国国家科学基金会;
关键词
Instrumental variables; Weak identification; Dimensionality asymptotics; C12; C36; C55; REGRESSION; TESTS;
D O I
10.1093/restud/rdab097
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a concept of weak identification in linear instrumental variable models in which the number of instruments can grow at the same rate or slower than the sample size. We propose a jackknifed version of the classical weak identification-robust Anderson-Rubin (AR) test statistic. Large-sample inference based on the jackknifed AR is valid under heteroscedasticity and weak identification. The feasible version of this statistic uses a novel variance estimator. The test has uniformly correct size and good power properties. We also develop a pre-test for weak identification that is related to the size property of a Wald test based on the Jackknife Instrumental Variable Estimator. This new pre-test is valid under heteroscedasticity and with many instruments.
引用
收藏
页码:2663 / 2686
页数:24
相关论文
共 50 条
  • [1] Bootstrap inference for instrumental variable models with many weak instruments
    Wang, Wenjie
    Kaffo, Maximilien
    [J]. JOURNAL OF ECONOMETRICS, 2016, 192 (01) : 231 - 268
  • [2] Optimal inference with many instruments
    Hahn, JY
    [J]. ECONOMETRIC THEORY, 2002, 18 (01) : 140 - 168
  • [3] Weak identification with many instruments
    Mikusheva, Anna
    Sun, Liyang
    [J]. ECONOMETRICS JOURNAL, 2024, 27 (02): : C1 - C28
  • [4] Testing with many weak instruments
    Andrews, Donald W. K.
    Stock, James H.
    [J]. JOURNAL OF ECONOMETRICS, 2007, 138 (01) : 24 - 46
  • [5] Weak Identification with Many Instruments
    Mikusheva, Anna
    Sun, Liyang
    [J]. arXiv, 2023,
  • [6] Identification and Inference With Many Invalid Instruments
    Kolesar, Michal
    Chetty, Raj
    Friedman, John
    Glaeser, Edward
    Imbens, Guido W.
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2015, 33 (04) : 474 - 484
  • [7] Parameter orthogonalization and Bayesian inference with many instruments
    Hahn, Jinyong
    Hansen, Karsten
    [J]. ECONOMICS LETTERS, 2011, 112 (02) : 207 - 209
  • [8] Minimum distance approach to inference with many instruments
    Kolesar, Michal
    [J]. JOURNAL OF ECONOMETRICS, 2018, 204 (01) : 86 - 100
  • [9] Identification, weak instruments, and statistical inference in econometrics
    Dufour, JM
    [J]. CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2003, 36 (04): : 767 - 808
  • [10] The many weak instruments problem and Mendelian randomization
    Davies, Neil M.
    Scholder, Stephanie von Hinke Kessler
    Farbmacher, Helmut
    Burgess, Stephen
    Windmeijer, Frank
    Smith, George Davey
    [J]. STATISTICS IN MEDICINE, 2015, 34 (03) : 454 - 468