Polynomial Solutions For Arbitrary Higher Spin Dirac Operators

被引:1
|
作者
Eelbode, D. [1 ]
Raeymaekers, T. [2 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[2] Univ Ghent, Dept Math Anal, Clifford Res Grp, B-9000 Ghent, Belgium
关键词
Higher spin; Dirac operators; representation; spin group; Clifford analysis; REPRESENTATIONS;
D O I
10.1080/10586458.2014.994149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a series of recent papers, we have introduced higher spin Dirac operators, which are far-reaching generalisations of the classical Dirac operator. Whereas the latter acts on spinor-valued functions, the former acts on functions taking values in arbitrary irreducible half-integer highest weight representations for the spin group. In this paper, we describe a general procedure to decompose the polynomial kernel spaces for these operators in irreducible summands for the regular action of the spin group. We will do this in an inductive way, making use of twisted higher spin operators.
引用
收藏
页码:339 / 354
页数:16
相关论文
共 50 条
  • [11] A Toy Model for Higher Spin Dirac Operators
    Eelbode, D.
    Van de Voorde, L.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) : 282 - 287
  • [12] TRIPLE MONOGENIC FUNCTIONS AND HIGHER SPIN DIRAC OPERATORS
    Brackx, F.
    Eelbode, D.
    Raeymaekers, T.
    Van De Voorde, L.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (06) : 759 - 774
  • [13] Reproducing Kernels for Polynomial Null-Solutions of Dirac Operators
    De Bie, H.
    Sommen, F.
    Wutzig, M.
    [J]. CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 339 - 383
  • [14] Reproducing Kernels for Polynomial Null-Solutions of Dirac Operators
    H. De Bie
    F. Sommen
    M. Wutzig
    [J]. Constructive Approximation, 2016, 44 : 339 - 383
  • [15] Polynomial Dirac Operators in Superspace
    Yuan, Hongfen
    Zhang, Zhihai
    Qiao, Yuying
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (03) : 755 - 769
  • [16] Polynomial Dirac Operators in Superspace
    Hongfen Yuan
    Zhihai Zhang
    Yuying Qiao
    [J]. Advances in Applied Clifford Algebras, 2015, 25 : 755 - 769
  • [17] On the Dirac and Spin-Dirac Operators
    E. A. Notte-Cuello
    [J]. Advances in Applied Clifford Algebras, 2010, 20 : 765 - 780
  • [18] On the Dirac and Spin-Dirac Operators
    Notte-Cuello, E. A.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (3-4) : 765 - 780
  • [19] The Dirac oscillator of arbitrary spin
    Moshinsky, M
    Mesa, AD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 4217 - 4236
  • [20] Construction of Arbitrary Order Conformally Invariant Operators in Higher Spin Spaces
    Chao Ding
    Raymond Walter
    John Ryan
    [J]. The Journal of Geometric Analysis, 2017, 27 : 2418 - 2452