Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain Adaptation

被引:108
|
作者
Du, Zhekai [1 ]
Li, Jingjing [1 ]
Su, Hongzu [1 ]
Zhu, Lei [2 ]
Lu, Ke [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China
[2] Shandong Normal Univ, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR46437.2021.00393
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabled target domain. Recently, adversarial domain adaptation with two distinct classifiers (bi-classifier) has been introduced into UDA which is effective to align distributions between different domains. Previous bi-classifier adversarial learning methods only focus on the similarity between the outputs of two distinct classifiers. However, the similarity of the outputs cannot guarantee the accuracy of target samples, i.e., traget samples may match to wrong categories even if the discrepancy between two classifiers is small. To challenge this issue, in this paper, we propose a cross-domain gradient discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples. Specifically, the gradient gives a cue for the semantic information of target samples so it can be used as a good supervision to improve the accuracy of target samples. In order to compute the gradient signal of target smaples, we further obtain target pseudo labels through a clustering-based self-supervised learning. Extensive experiments on three widely used UDA datasets show that our method surpasses many previous state-of-the-arts.
引用
收藏
页码:3936 / 3945
页数:10
相关论文
共 50 条
  • [21] Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
    Gao, Huan
    Guo, Jichang
    Wang, Guoli
    Zhang, Qian
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9903 - 9913
  • [22] Unsupervised Adversarial Domain Adaptation for Cross-Domain Face Presentation Attack Detection
    Wang, Guoqing
    Han, Hu
    Shan, Shiguang
    Chen, Xilin
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 56 - 69
  • [23] Unsupervised domain adaptation by cross-domain consistency learning for CT body composition
    Ali, Shahzad
    Lee, Yu Rim
    Park, Soo Young
    Tak, Won Young
    Jung, Soon Ki
    [J]. Machine Vision and Applications, 2025, 36 (01)
  • [24] DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation
    Lee, Seunghun
    Cho, Sunghyun
    Im, Sunghoon
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15247 - 15256
  • [25] Cross-Domain Fault Diagnosis of Rolling Bearings Using Domain Adaptation with Classifier Discrepancy
    Zhang Y.-C.
    Li Q.
    Ren Z.-H.
    Zhou S.-H.
    [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (03): : 367 - 372
  • [26] Joint cross-domain classification and subspace learning for unsupervised adaptation
    Fernando, Basura
    Tommasi, Tatiana
    Tuytelaars, Tinne
    [J]. PATTERN RECOGNITION LETTERS, 2015, 65 : 60 - 66
  • [27] Crowd Counting via Unsupervised Cross-Domain Feature Adaptation
    Ding, Guanchen
    Yang, Daiqin
    Wang, Tao
    Wang, Sihan
    Zhang, Yunfei
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4665 - 4678
  • [28] Unsupervised Energy-based Adversarial Domain Adaptation for Cross-domain Text Classification
    Zou, Han
    Yang, Jianfei
    Wu, Xiaojian
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1208 - 1218
  • [29] Volumetric Body Composition Through Cross-Domain Consistency Training for Unsupervised Domain Adaptation
    Ali, Shahzad
    Lee, Yu Rim
    Park, Soo Young
    Tak, Won Young
    Jung, Soon Ki
    [J]. ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 289 - 299
  • [30] NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation
    Jingzheng Li
    Hailong Sun
    [J]. Machine Learning, 2023, 112 : 3473 - 3496