MACHINE LEARNING-BASED PREDICTIVE MODELS ARE MORE ACCURATE THAN TNM STAGE IN PREDICTING SURVIVAL IN PATIENTS WITH GASTRIC CANCER

被引:0
|
作者
Das, Amit
Mohapatra, Sonmoon
Ngamruengphong, Saowanee
机构
关键词
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Mo1083
引用
收藏
页码:S782 / S783
页数:2
相关论文
共 50 条
  • [41] Machine learning models for predicting one-year survival in patients with metastatic gastric cancer who experienced upfront radical gastrectomy
    Zhang, Cheng
    Zhang, Yi
    Yang, Ya-Hui
    Xu, Hui
    Zhang, Xiao-Peng
    Wu, Zhi-Jun
    Xie, Min-Min
    Feng, Ying
    Feng, Chong
    Ma, Tai
    [J]. FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [42] Machine Learning-Based Models Enhance the Prediction of Prostate Cancer
    Chen, Sunmeng
    Jian, Tengteng
    Chi, Changliang
    Liang, Yi
    Liang, Xiao
    Yu, Ying
    Jiang, Fengming
    Lu, Ji
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [43] Multi-center evaluation of machine learning-based radiomic model in predicting disease free survival and adjuvant chemotherapy benefit in stage II colorectal cancer patients
    Hui Zhu
    Muni Hu
    Yanru Ma
    Xun Yao
    Xiaozhu Lin
    Menglei Li
    Yue Li
    Zhiyuan Wu
    Debing Shi
    Tong Tong
    Haoyan Chen
    [J]. Cancer Imaging, 23
  • [44] A model based on a new inflammation-nutrition score and TNM stage for predicting overall survival of patients with colorectal cancer
    Fujino, S.
    Miyoshi, N.
    Saso, K.
    Sasaki, M.
    Ishikawa, S.
    Takahashi, Y.
    Yasui, M.
    Ohue, M.
    Hata, T.
    Matsuda, C.
    Mizushima, T.
    Doki, Y.
    Mori, M.
    [J]. ANNALS OF ONCOLOGY, 2018, 29
  • [45] Multi-center evaluation of machine learning-based radiomic model in predicting disease free survival and adjuvant chemotherapy benefit in stage II colorectal cancer patients
    Zhu, Hui
    Hu, Muni
    Ma, Yanru
    Yao, Xun
    Lin, Xiaozhu
    Li, Menglei
    Li, Yue
    Wu, Zhiyuan
    Shi, Debing
    Tong, Tong
    Chen, Haoyan
    [J]. CANCER IMAGING, 2023, 23 (01)
  • [46] Machine Learning-Based Survival Prediction Models for Progression-Free and Overall Survival in Advanced-Stage Hodgkin Lymphoma
    Jorgensen, Rasmus Rask Kragh
    Bergstroem, Fanny
    Eloranta, Sandra
    Severinsen, Marianne Tang
    Smeland, Knut Bjoro
    Fossa, Alexander
    Christensen, Jacob Haaber
    Hutchings, Martin
    Bo Dahl-Sorensen, Rasmus
    Kamper, Peter
    Glimelius, Ingrid
    Smedby, Karin
    Parsons, Susan
    Rodday, Angie Mae
    Maurer, Matthew
    Evens, Andrew
    El-Galaly, Tarec
    Jakobsen, Lasse Hjort
    [J]. JCO CLINICAL CANCER INFORMATICS, 2024, 8
  • [47] Machine Learning-Based Models for Assessing Postoperative Risk Factors in Patients with Cervical Cancer
    Zhang, Yu
    Qin, Zhihui
    Li, Linrui
    Liu, Long
    Wu, Qibing
    [J]. ACADEMIC RADIOLOGY, 2024, 31 (04) : 1410 - 1418
  • [48] Machine learning-based radiomics models for prediction of locoregional recurrence in patients with breast cancer
    Lee, Joongyo
    Yoo, Sang Kyun
    Kim, Kangpyo
    Lee, Byung Min
    Park, Vivian Youngjean
    Kim, Jin Sung
    Kim, Yong Bae
    [J]. ONCOLOGY LETTERS, 2023, 26 (04)
  • [49] A machine learning-based approach to predicting the malignant and metastasis of thyroid cancer
    Gu, Jianhua
    Xie, Rongli
    Zhao, Yanna
    Zhao, Zhifeng
    Xu, Dan
    Ding, Min
    Lin, Tingyu
    Xu, Wenjuan
    Nie, Zihuai
    Miao, Enjun
    Tan, Dan
    Zhu, Sibo
    Shen, Dongjie
    Fei, Jian
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [50] Develop machine learning-based regression predictive models for engineering protein solubility
    Han, Xi
    Wang, Xiaonan
    Zhou, Kang
    [J]. BIOINFORMATICS, 2019, 35 (22) : 4640 - 4646