Radon-John transforms and spherical harmonics

被引:1
|
作者
Estrada, Ricardo [1 ]
Rubin, Boris [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词
Gegenbauer-Chebyshev integrals; Radon-John transforms; Grass-mann manifolds; NONUNIQUENESS; RANGE; PLANE;
D O I
10.1090/conm/714/14329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The d-plane Radon-John transform takes functions on R-n to functions on the set of all d-dimensional planes in R-n by integration over these planes. We study the action of this transform on degenerate functions of the form f(x) = f(0)(r) Y-k(theta), where r = vertical bar x vertical bar > 0, theta = x/vertical bar x vertical bar, and Yk is a spherical harmonic of degree k. It is shown that the results for d < n - 1 are surprisingly different from those in the known case d = n - 1.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [21] Radon transforms and packings
    Boguslavsky, MI
    [J]. DISCRETE APPLIED MATHEMATICS, 2001, 111 (1-2) : 3 - 22
  • [22] SUPPORT OF RADON TRANSFORMS
    HELGASON, S
    [J]. ADVANCES IN MATHEMATICS, 1980, 38 (01) : 91 - 100
  • [23] ON IMAGES OF RADON TRANSFORMS
    GRINBERG, EL
    [J]. DUKE MATHEMATICAL JOURNAL, 1985, 52 (04) : 939 - 972
  • [24] SPHERICAL HARMONICS
    SEELEY, RT
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2): : 115 - &
  • [25] Spherical Harmonics
    Atkinson, Kendall
    Han, Weimin
    [J]. SPHERICAL HARMONICS AND APPROXIMATIONS ON THE UNIT SPHERE: AN INTRODUCTION, 2012, 2044 : 11 - 86
  • [26] ON THE RELATION BETWEEN SPHERICAL HARMONICS AND SIMPLIFIED SPHERICAL HARMONICS METHODS
    Coppa, G. G. M.
    Giusti, V.
    Montagnini, B.
    Ravetto, P.
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2010, 39 (2-4): : 164 - 191
  • [27] Spherical cap harmonics revisited and their relationship to ordinary spherical harmonics
    De Santis, A
    Torta, JM
    Lowes, FJ
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH PART A-SOLID EARTH AND GEODESY, 1999, 24 (11-12): : 935 - 941
  • [28] INVERSE RADON TRANSFORMS THROUGH INVERSE WAVELET TRANSFORMS
    HOLSCHNEIDER, M
    [J]. INVERSE PROBLEMS, 1991, 7 (06) : 853 - 861
  • [29] Null spaces of Radon transforms
    Estrada, Ricardo
    Rubin, Boris
    [J]. ADVANCES IN MATHEMATICS, 2016, 290 : 1159 - 1182
  • [30] RADON TRANSFORMS ON GRASSMANN MANIFOLDS
    GONZALEZ, FB
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (02) : 339 - 362