This paper presents an approach to postprocess ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical postprocessing of ensemble predictions are tested: the first approach is based on multinomial logistic regression and the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on stationwise postprocessing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model.
机构:
Univ Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, Brazil
Siqueira, Vinicius Alencar
论文数: 引用数:
h-index:
机构:
Weerts, Albrecht
Klein, Bastian
论文数: 0引用数: 0
h-index: 0
机构:
German Fed Inst Hydrol BfG, Koblenz, GermanyUniv Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, Brazil
Klein, Bastian
Fan, Fernando Mainardi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, Brazil
Fan, Fernando Mainardi
Dias de Paiva, Rodrigo Cauduro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, Brazil
Dias de Paiva, Rodrigo Cauduro
Collischonn, Walter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Pesquisas Hidraul IPH, Porto Alegre, RS, Brazil