Discrete Postprocessing of Total Cloud Cover Ensemble Forecasts

被引:17
|
作者
Hemri, Stephan [1 ]
Haiden, Thomas [2 ]
Pappenberger, Florian [2 ,3 ]
机构
[1] Heidelberg Inst Theoret Studies, Heidelberg, Germany
[2] European Ctr Medium Range Weather Forecasts, Reading, Berks, England
[3] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
关键词
EXTENDED LOGISTIC-REGRESSION; PROBABILISTIC PRECIPITATION FORECASTS; PART II; ECMWF; PREDICTION; CALIBRATION; VERIFICATION; MODELS; OUTPUT; RULES;
D O I
10.1175/MWR-D-15-0426.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents an approach to postprocess ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical postprocessing of ensemble predictions are tested: the first approach is based on multinomial logistic regression and the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on stationwise postprocessing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model.
引用
下载
收藏
页码:2565 / 2577
页数:13
相关论文
共 50 条
  • [41] Best Practices for Postprocessing Ensemble Climate Forecasts. Part I: Selecting Appropriate Recalibration Methods
    Sansom, Philip G.
    Ferro, Christopher A. T.
    Stephenson, David B.
    Goddard, Lisa
    Mason, Simon J.
    JOURNAL OF CLIMATE, 2016, 29 (20) : 7247 - 7264
  • [42] Enforcing calibration in ensemble postprocessing
    Wilks, Daniel S.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (710) : 76 - 84
  • [43] Postprocessing continental-scale, medium-range ensemble streamflow forecasts in South America using Ensemble Model Output Statistics and Ensemble Copula Coupling
    Siqueira, Vinicius Alencar
    Weerts, Albrecht
    Klein, Bastian
    Fan, Fernando Mainardi
    Dias de Paiva, Rodrigo Cauduro
    Collischonn, Walter
    JOURNAL OF HYDROLOGY, 2021, 600
  • [44] Machine learning for total cloud cover prediction
    Ágnes Baran
    Sebastian Lerch
    Mehrez El Ayari
    Sándor Baran
    Neural Computing and Applications, 2021, 33 : 2605 - 2620
  • [45] PERCENT OF POSSIBLE SUNSHINE AND TOTAL CLOUD COVER
    HOYT, DV
    MONTHLY WEATHER REVIEW, 1977, 105 (05) : 648 - 652
  • [46] Machine learning for total cloud cover prediction
    Baran, Agnes
    Lerch, Sebastian
    El Ayari, Mehrez
    Baran, Sandor
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07): : 2605 - 2620
  • [47] PERCENT OF POSSIBLE SUNSHINE AND TOTAL CLOUD COVER
    COURT, A
    MONTHLY WEATHER REVIEW, 1978, 106 (04) : 571 - 573
  • [48] Impact of satellite-derived cloud cover on road weather forecasts
    Bliznak, Vojtech
    Zacharov, Petr
    Sokol, Zbynek
    Pesice, Petr
    Stastka, Jindrich
    Sedlak, Pavel
    ATMOSPHERIC RESEARCH, 2023, 292
  • [49] Comparison of Postprocessing Methods for the Calibration of 100-m Wind Ensemble Forecasts at Off- and Onshore Sites
    Junk, Constantin
    von Bremen, Lueder
    Kuehn, Martin
    Spaeth, Stephan
    Heinemann, Detlev
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2014, 53 (04) : 950 - 969
  • [50] Ensemble Forecasts: Probabilistic Seasonal Forecasts Based on a Model Ensemble
    Aizenman, Hannah
    Grossberg, Michael D.
    Krakauer, Nir Y.
    Gladkova, Irina
    CLIMATE, 2016, 4 (02)