Bayesian integrative model for multi-omics data with missingness
被引:16
|
作者:
Fang, Zhou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Fang, Zhou
[1
]
Ma, Tianzhou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Epidemiol & Biostat, College Pk, MD 20742 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Ma, Tianzhou
[2
]
Tang, Gong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Tang, Gong
[1
]
Zhu, Li
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Zhu, Li
[1
]
Yan, Qi
论文数: 0引用数: 0
h-index: 0
机构:
UPMC, Childrens Hosp Pittsburgh, Div Pediat Pulmonol Allergy & Immunol, Pittsburgh, PA 15224 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Yan, Qi
[3
]
Wang, Ting
论文数: 0引用数: 0
h-index: 0
机构:
UPMC, Childrens Hosp Pittsburgh, Div Pediat Pulmonol Allergy & Immunol, Pittsburgh, PA 15224 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Wang, Ting
[3
]
Celedon, Juan C.
论文数: 0引用数: 0
h-index: 0
机构:
UPMC, Childrens Hosp Pittsburgh, Div Pediat Pulmonol Allergy & Immunol, Pittsburgh, PA 15224 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Celedon, Juan C.
[3
]
Chen, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
UPMC, Childrens Hosp Pittsburgh, Div Pediat Pulmonol Allergy & Immunol, Pittsburgh, PA 15224 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Chen, Wei
[1
,3
]
Tseng, George C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
Tseng, George C.
[1
]
机构:
[1] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
[2] Univ Maryland, Dept Epidemiol & Biostat, College Pk, MD 20742 USA
[3] UPMC, Childrens Hosp Pittsburgh, Div Pediat Pulmonol Allergy & Immunol, Pittsburgh, PA 15224 USA
Motivation: Integrative analysis of multi-omics data from different high-throughput experimental platforms provides valuable insight into regulatory mechanisms associated with complex diseases, and gains statistical power to detect markers that are otherwise overlooked by single-platform omics analysis. In practice, a significant portion of samples may not be measured completely due to insufficient tissues or restricted budget (e.g. gene expression profile are measured but not methylation). Current multi-omics integrative methods require complete data. A common practice is to ignore samples with any missing platform and perform complete case analysis, which leads to substantial loss of statistical power. Methods: In this article, inspired by the popular Integrative Bayesian Analysis of Genomics data (iBAG), we propose a full Bayesian model that allows incorporation of samples with missing omics data. Results: Simulation results show improvement of the new full Bayesian approach in terms of outcome prediction accuracy and feature selection performance when sample size is limited and proportion of missingness is large. When sample size is large or the proportion of missingness is low, incorporating samples with missingness may introduce extra inference uncertainty and generate worse prediction and feature selection performance. To determine whether and how to incorporate samples with missingness, we propose a self-learning cross-validation (CV) decision scheme. Simulations and a real application on child asthma dataset demonstrate superior performance of the CV decision scheme when various types of missing mechanisms are evaluated.
机构:
Univ Massachusetts, Med Sch, Dept Mol Cell & Canc Biol, Worcester, MA 01605 USA
Univ Massachusetts, Med Sch, Program Mol Med, Worcester, MA 01605 USA
Univ Massachusetts, Med Sch, Program Bioinformat & Integrat Biol, Worcester, MA 01605 USADuke Univ, Sch Med, Dept Cell Biol, Durham, NC 27708 USA
机构:
Indian Stat Inst, Human Genet Unit, Kolkata 700108, India
St Jude Childrens Res Hosp, Dept Biostat, Memphis, TN 38105 USAIndian Stat Inst, Human Genet Unit, Kolkata 700108, India
Das, Sarmistha
Mukhopadhyay, Indranil
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Human Genet Unit, Kolkata 700108, IndiaIndian Stat Inst, Human Genet Unit, Kolkata 700108, India