Quantization scheme for arbitrary one-dimensional potential wells

被引:50
|
作者
Cao, ZQ [1 ]
Liu, QN
Shen, QS
Dou, XM
Chen, YG
Ozaki, Y
机构
[1] Shanghai Jiao Tong Univ, Inst Opt & Photon, Mol Photon Grp, Shanghai 200030, Peoples R China
[2] Kwansei Gakuin Univ, Sch Sci, Dept Chem, Nishinomiya, Hyogo 662, Japan
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevA.63.054103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A formalism that utilizes the analytic transfer matrix technique is applied to the Schrodinger equation. This approach leads to proofs that the phase loss at a turning point is exactly equal to pi. We also show the existence of the phase contributions devoted by the scattered subwaves, which to our knowledge, have never been taken into account in previous works. Subsequently, an exact quantization condition, which differs essentially from the WKB method, is introduced for arbitrary potential wells.
引用
收藏
页码:541031 / 541034
页数:4
相关论文
共 50 条
  • [41] Defects and photonic wells in one-dimensional photonic lattices
    Miyazaki, H
    Jimba, Y
    Kim, CY
    Watanabe, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (12) : 3842 - 3852
  • [42] Realization of one-dimensional anyons with arbitrary statistical phase
    Kwan, Joyce
    Segura, Perrin
    Li, Yanfei
    Kim, Sooshin
    Gorshkov, Alexey V.
    Eckardt, Andre
    Bakkali-Hassani, Brice
    Greiner, Markus
    SCIENCE, 2024, 386 (6725) : 1055 - 1060
  • [43] PEIERLS INSTABILITY IN ONE-DIMENSIONAL CONDUCTORS WITH ARBITRARY BANDFILLING
    NIELSEN, JB
    CARNEIRO, K
    SOLID STATE COMMUNICATIONS, 1980, 33 (11) : 1097 - 1099
  • [44] Quantization of Nonsmooth Curves and the Semiclassical Spectrum of the One-Dimensional Schrodinger Operator with a Localized Perturbation of the Potential
    Lavrinenko, I. A.
    Shafarevich, A. I.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (02) : 209 - 218
  • [45] Polarons and bipolarons in one-dimensional systems (arbitrary coupling)
    Kashirina, N. I.
    Kashyrina, Y. O.
    Korol, O. A.
    Roik, O. S.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2023, 766 (01) : 111 - 120
  • [46] Designing arbitrary one-dimensional potentials on an atom chip
    Tajik, Mohammadamin
    Rauer, Bernhard
    Schweigler, Thomas
    Cataldini, Federica
    Sabino, Joao
    Moller, Frederik S.
    Ji, Si-Cong
    Mazets, Igor E.
    Schmiedmayer, Joerg
    OPTICS EXPRESS, 2019, 27 (23) : 33474 - 33487
  • [47] ONE-DIMENSIONAL ISING-MODEL WITH ARBITRARY SPIN
    BOWDEN, RL
    KAPLAN, DM
    JOURNAL DE PHYSIQUE, 1976, 37 (7-8): : 803 - 811
  • [48] ON ONE-DIMENSIONAL HEAT CONDUCTION WITH AN ARBITRARY HEATING RATE
    SUTTON, GW
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1957, 24 (11): : 854 - 855
  • [49] The determinant of one-dimensional polyharmonic operators of arbitrary order
    Freitas, Pedro
    Lipovsky, Jiri
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (12)
  • [50] ONE-DIMENSIONAL HEAT CONDUCTION WITH ARBITRARY HEATING RATE
    CHEN, SY
    JOURNAL OF THE AEROSPACE SCIENCES, 1961, 28 (04): : 336 - 337