Properties of Root Vector Functions for the One-Dimensional Dirac Operator

被引:2
|
作者
Kurbanov, V. M. [1 ]
Ismailova, A. I. [1 ]
机构
[1] Natl Acad Sci Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
关键词
DIFFERENTIAL-OPERATORS; EIGENFUNCTIONS;
D O I
10.1134/S1064562410040307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Properties of root vector functions for the one-dimensional Dirac operator are discussed. Additionally, theorems on component wise equiconvergence that is uniform on a compact set and a component wise localization principle are proved. Various equations have been provided in support of the problem. The system also contains the corresponding eigenfunction and all the associated vector functions of orders less than k. Component wise equiconvergence and the component wise localization principle for the Schr̈odinger operator with a matrix potential has been established. The proofs of all the theorems on component wise equiconvergence are based on the mean value formula.
引用
收藏
页码:617 / 620
页数:4
相关论文
共 50 条
  • [1] Properties of root vector functions for the one-dimensional Dirac operator
    V. M. Kurbanov
    A. I. Ismailova
    [J]. Doklady Mathematics, 2010, 82 : 617 - 620
  • [2] REPRESENTATIONS FOR ROOT VECTOR-FUNCTIONS OF DIRAC ONE-DIMENSIONAL OPERATOR
    Kurbanov, Vali M.
    Ismaylova, Aytakin I.
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2011, 35 (43): : 65 - 72
  • [3] On the oscillation of eigenvector functions of the one-dimensional Dirac operator
    Aliev, Z. S.
    Rzaeva, Kh. Sh.
    [J]. DOKLADY MATHEMATICS, 2016, 94 (01) : 401 - 405
  • [4] On the oscillation of eigenvector functions of the one-dimensional Dirac operator
    Z. S. Aliev
    Kh. Sh. Rzaeva
    [J]. Doklady Mathematics, 2016, 94 : 401 - 405
  • [5] The eigenvalue problem of one-dimensional Dirac operator
    Karwowski, Jacek
    Ishkhanyan, Artur
    Poszwa, Andrzej
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2020, 139 (12)
  • [6] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Daniel M. Elton
    Michael Levitin
    Iosif Polterovich
    [J]. Annales Henri Poincaré, 2014, 15 : 2321 - 2377
  • [7] The eigenvalue problem of one-dimensional Dirac operator
    Jacek Karwowski
    Artur Ishkhanyan
    Andrzej Poszwa
    [J]. Theoretical Chemistry Accounts, 2020, 139
  • [8] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Elton, Daniel M.
    Levitin, Michael
    Polterovich, Iosif
    [J]. ANNALES HENRI POINCARE, 2014, 15 (12): : 2321 - 2377
  • [9] On the basis property of the system of eigenfunctions and associated functions of a one-dimensional Dirac operator
    Savchuk, A. M.
    [J]. IZVESTIYA MATHEMATICS, 2018, 82 (02) : 351 - 376
  • [10] Spectral and localization properties for the one-dimensional Bernoulli discrete Dirac operator
    de Oliveira, CR
    Prado, RA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (07)