Bioleaching metals from waste electrical and electronic equipment (WEEE) by Aspergillus niger: a review

被引:16
|
作者
Li, Jingying [1 ]
Xu, Tong [1 ]
Liu, Jinyuan [1 ]
Wen, Jiangxian [1 ]
Gong, Shuli [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Qingdao 266042, Peoples R China
关键词
Biometallurgy; Fungus; Bioleaching mechanisms; Bioleaching methods; Organic acids; Resource recovery; Parameter optimization; PRINTED-CIRCUIT BOARDS; LITHIUM-ION BATTERIES; INCINERATOR FLY-ASH; MOBILE PHONE; VALUABLE METALS; CITRIC-ACID; PRECIOUS METALS; ORGANIC-ACIDS; HEAVY-METALS; METALLURGICAL RECOVERY;
D O I
10.1007/s11356-021-15074-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the twenty-first century, the increasing demand for electrical and electronic equipment (EEE) has caused its quick update and the shortening of its service life span. As a consequence, a large number of waste electrical and electronic equipment (WEEE) needs to be processed and recycled. As an environmentally friendly method, biometallurgy has received extensive attention in the disposal of WEEE in recent years. Aspergillus niger is an acid-producing fungus with a potential applicability to improve metals' recycling efficiency. This review article describes the latest statistical status of WEEE and presents the latest progress of various metallurgical methods involved in WEEE recycling for metal recovery. Moreover, based on the summary and comparison towards studies have been reported for bioleaching metals from WEEE by A. niger, the bioleaching mechanisms and the bioleaching methods are explained, as well as the effects of process parameters on the performance of the bioleaching process are also discussed. Some insights and perspectives are provided for A. niger to be applied to industrial processing scale.
引用
收藏
页码:44622 / 44637
页数:16
相关论文
共 50 条
  • [41] Simulation-based optimisation of a sustainable recovery network for Waste from Electrical and Electronic Equipment (WEEE)
    Shokohyar, S.
    Mansour, S.
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2013, 26 (06) : 487 - 503
  • [42] Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE)
    Savi, Daniel
    Kasser, Ueli
    Ott, Thomas
    WASTE MANAGEMENT, 2013, 33 (12) : 2737 - 2743
  • [43] Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation
    Tostar, Sandra
    Stenvall, Erik
    Boldizar, Antal
    Foreman, Mark R. St. J.
    WASTE MANAGEMENT, 2013, 33 (06) : 1478 - 1482
  • [44] Circular economy practices in the waste electrical and electronic equipment (WEEE) industry: A systematic review and future research agendas
    Pan, Xu
    Wong, Christina W. Y.
    Li, Chunsheng
    JOURNAL OF CLEANER PRODUCTION, 2022, 365
  • [45] Review of Gold Bioleaching from the Electronic Waste
    Li Jingying
    Zhang Mei
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL TECHNOLOGY AND KNOWLEDGE TRANSFER, 2012, : 436 - 441
  • [46] Waste electrical and electronic equipment (WEEE) management in Korea: generation, collection, and recycling systems
    Yong-Chul Jang
    Journal of Material Cycles and Waste Management, 2010, 12 : 283 - 294
  • [47] Waste electrical and electronic equipment (WEEE) management: An analysis on the australian e-waste recycling scheme
    Dias, Pablo
    Bernardes, Andrea Moura
    Huda, Nazmul
    JOURNAL OF CLEANER PRODUCTION, 2018, 197 : 750 - 764
  • [49] Flame retardants and plasticizers in a Canadian waste electrical and electronic equipment (WEEE) dismantling facility
    Stubbings, William A.
    Nguyen, Linh, V
    Romanak, Kevin
    Jantunen, Liisa
    Melymuk, Lisa
    Arrandale, Victoria
    Diamond, Miriam L.
    Venier, Marta
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 675 : 594 - 603
  • [50] Environmental Risks Related to the Recovery and Recycling Processes of Waste Electrical and Electronic Equipment (WEEE)
    Generowicz, Agnieszka
    Iwanejko, Ryszarda
    PROBLEMY EKOROZWOJU, 2017, 12 (02): : 181 - 192