A Current and Newly Proposed Artificial Intelligence Algorithm for Reading Small Bowel Capsule Endoscopy

被引:9
|
作者
Oh, Dong Jun [1 ]
Hwang, Youngbae [2 ]
Lim, Yun Jeong [1 ]
机构
[1] Dongguk Univ, Ilsan Hosp, Coll Med, Dept Internal Med, Goyang 10326, South Korea
[2] Chungbuk Natl Univ, Dept Elect Engn, Cheongju 28644, South Korea
关键词
artificial intelligence; automatic detection; capsule endoscopy; reading software; DEVICE-ASSISTED ENTEROSCOPY; DISORDERS EUROPEAN-SOCIETY; AUTOMATIC DETECTION; IMAGES; SOFTWARE; LESIONS; PERFORMANCE; LIMITATIONS; DIAGNOSIS; QUALITY;
D O I
10.3390/diagnostics11071183
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Small bowel capsule endoscopy (SBCE) is one of the most useful methods for diagnosing small bowel mucosal lesions. However, it takes a long time to interpret the capsule images. To solve this problem, artificial intelligence (AI) algorithms for SBCE readings are being actively studied. In this article, we analyzed several studies that applied AI algorithms to SBCE readings, such as automatic lesion detection, automatic classification of bowel cleanliness, and automatic compartmentalization of small bowels. In addition to automatic lesion detection using AI algorithms, a new direction of AI algorithms related to shorter reading times and improved lesion detection accuracy should be considered. Therefore, it is necessary to develop an integrated AI algorithm composed of algorithms with various functions in order to be used in clinical practice.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Artificial Intelligence and Capsule Endoscopy: Automatic Detection of Small Bowel Lymphangiectasia and Xanthomas Using a Convolutional Neural Network
    Ribeiro, Tiago
    Mascarenhas, Miguel
    Afonso, Joao
    Ferreira, Joao
    Cardoso, Helder
    Andrade, Patricia
    Parente, Marco
    Natal, Renato
    Macedo, Guilherme
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2021, 116 : S624 - S625
  • [32] Artificial Intelligence and Capsule Endoscopy: Automatic Detection of Small Bowel Blood Content Using a Convolutional Neural Network
    Saraiva, Miguel Mascarenhas
    Ribeiro, Tiago
    Afonso, Joao
    Ferreira, Joao P. S.
    Cardoso, Helder
    Andrade, Patricia
    Parente, Marco P. L.
    Jorge, Renato N.
    Macedo, Guilherme
    GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY, 2022, 29 (05) : 331 - 338
  • [33] Video capsule endoscopy of the small bowel
    Eliakim, Rami
    CURRENT OPINION IN GASTROENTEROLOGY, 2010, 26 (02) : 129 - 133
  • [34] Capsule endoscopy: Beyond small bowel
    Adler, Samuel N.
    JOURNAL OF DIGESTIVE ENDOSCOPY, 2012, 3 : 71 - 73
  • [35] Video capsule endoscopy of the small bowel
    Eliakim, Rami
    CURRENT OPINION IN GASTROENTEROLOGY, 2013, 29 (02) : 133 - 139
  • [36] Retention of small bowel capsule endoscopy
    Rosa, Bruno
    Dray, Xavier
    Koulaouzidis, Anastasios
    CURRENT OPINION IN GASTROENTEROLOGY, 2023, 39 (03) : 227 - 233
  • [37] Video capsule endoscopy of the small bowel
    Eliakim, Rami
    CURRENT OPINION IN GASTROENTEROLOGY, 2008, 24 (02) : 159 - 163
  • [38] Proposed Scoring System to Determine Small Bowel Mass Lesions Using Capsule Endoscopy
    Shyung, Li-Rung
    Lin, Shee-Chan
    Shih, Shou-Chuan
    Chang, Wen-Hsiung
    Chu, Cheng-Hsin
    Wang, Tsang-En
    JOURNAL OF THE FORMOSAN MEDICAL ASSOCIATION, 2009, 108 (07) : 533 - 538
  • [39] Diagnostic accuracy of artificial intelligence-aided capsule endoscopy (TOP100) in overt small bowel bleeding
    Antonio Giordano
    Miriam Escapa
    Miquel Urpí-Ferreruela
    Gherzon Casanova
    Gloria Fernández-Esparrach
    Àngels Ginès
    Josep Llach
    Begoña González-Suárez
    Surgical Endoscopy, 2023, 37 : 7658 - 7666
  • [40] Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images
    Tsuboi, Akiyoshi
    Oka, Shiro
    Aoyama, Kazuharu
    Saito, Hiroaki
    Aoki, Tomonori
    Yamada, Atsuo
    Matsuda, Tomoki
    Fujishiro, Mitsuhiro
    Ishihara, Soichiro
    Nakahori, Masato
    Koike, Kazuhiko
    Tanaka, Shinji
    Tada, Tomohiro
    DIGESTIVE ENDOSCOPY, 2020, 32 (03) : 382 - 390