The scattering transform for the Benjamin-Ono equation in the small-dispersion limit

被引:9
|
作者
Miller, Peter D. [1 ]
Wetzel, Alfredo N. [1 ]
机构
[1] Univ Michigan, Dept Math, East Hall,530 Church St, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Benjamin-Ono equation; Inverse-scattering transform; Small-dispersion limit; KORTEWEG-DEVRIES EQUATION; INTERNAL WAVES; UNIVERSALITY; MODULATION; FLUIDS;
D O I
10.1016/j.physd.2015.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using exact formulae for the scattering data of the Benjamin-Ono equation valid for general rational potentials recently obtained in Miller and Wetzel [17], we rigorously analyze the scattering data in the small-dispersion limit. In particular, we deduce precise asymptotic formulae for the reflection coefficient, the location of the eigenvalues and their density, and the asymptotic dependence of the phase constant (associated with each eigenvalue) on the eigenvalue itself. Our results give direct confirmation of conjectures in the literature that have been partly justified by means of inverse scattering, and they also provide new details not previously reported in the literature. (C) 2015 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:185 / 199
页数:15
相关论文
共 50 条
  • [21] On the Benjamin-Ono equation in the half line
    Cardona, Duvan
    Esquivel, Liliana
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212
  • [22] Perturbation theory for the Benjamin-Ono equation
    Kaup, DJ
    Lakoba, TI
    Matsuno, Y
    INVERSE PROBLEMS, 1999, 15 (01) : 215 - 240
  • [23] Spin generalizations of the Benjamin-Ono equation
    Berntson, Bjorn K.
    Langmann, Edwin
    Lenells, Jonatan
    arXiv, 2022,
  • [24] An explicit formula for the Benjamin-Ono equation
    Gerard, Patrick
    TUNISIAN JOURNAL OF MATHEMATICS, 2023, 5 (03) : 593 - 603
  • [25] MEROMORPHIC SOLUTIONS OF THE BENJAMIN-ONO EQUATION
    CASE, KM
    PHYSICA A, 1979, 96 (1-2): : 173 - 182
  • [26] A numerical method for the Benjamin-Ono equation
    Thomee, V
    Murthy, ASV
    BIT, 1998, 38 (03): : 597 - 611
  • [27] The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces
    Fonseca, German
    Linares, Felipe
    Ponce, Gustavo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (05): : 763 - 790
  • [28] Lie symmetries of Benjamin-Ono equation
    Zhao, Weidong
    Munir, Mobeen
    Murtaza, Ghulam
    Athar, Muhammad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9496 - 9510
  • [29] On the new extensions to the Benjamin-Ono equation
    Ali, Khalid Karam
    Nuruddeen, Rahmatullah Ibrahim
    Yildirim, Ahmet
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (03): : 424 - 445
  • [30] Symmetry algebra of the Benjamin-Ono equation
    Chetverikov, VN
    ACTA APPLICANDAE MATHEMATICAE, 1999, 56 (2-3) : 121 - 138