GLOBAL EXISTENCE TO THE INITIAL-BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR DIFFUSION AND WAVE EQUATIONS II

被引:1
|
作者
Nakao, Mitsuhiro [1 ]
机构
[1] Kyushu Univ, Fac Math, Moto Oka 744, Fukuoka, Fukuoka 8190395, Japan
关键词
global existence; system; nonlinear diffusion equation; nonlinear wave equation; LINEAR PARABOLIC EQUATIONS; BEHAVIOR;
D O I
10.2206/kyushujm.72.287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the global existence and uniqueness of the strong solution pair (u, v) to the initial-boundary value problem for coupled equations of an m-Laplacian-type diffusion equation and a nonlinear wave equation. The interaction of the two equations is given through nonlinear source terms f (u, v) and g(u, v). To derive the required a priori estimates we employ a 'loan' method. The estimation of the L-infinity-norm of solutions of the nonlinear parabolic equation due to Moser's iteration method is a key step of our argument.
引用
收藏
页码:287 / 306
页数:20
相关论文
共 50 条